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Some Aspects of an Infinite N-dimensional Spherical Potential Well
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Abstract: We consider the solution of the Schrodinger equation in N dimensions for the infinite N-dimensional
spherical potential well. Seme aspects of the radial part and the angular part of the wave function are
presented and discussed. In particular, the effective potential, orthonormality, energy eigenvalues and the
degeneracy are investigated. Thus the role of the topological structure of the configuration space of a
physical system on the quantum nature of an observable of the system is emphasized.
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Introduction

Recently, much attention has been paid to the
investigation of quantum systems in N-dimensional
space. The interest of workers has been in different
areas of physics. Grosche and Steiner (1995) and
Fukutaka and Kashiwa (1987) considered path integrals
and its quantization for a D-dimensional sphere and
curved manifolds. Romeo (1995) studied the dependence
of the Wentzel-Kramers-Brillouin (WKB) approximations
in connection with the hyperspherical quantum billiards.
The theory of zero-range potentials and the
generalization of Fermi pseudopotentials to higher
dimensions were investigated by Wo'dkiewic (1991).
The consideration of the eigerivalue bounds for a class of
singular potentials in N-dimensions was accomplished by
Hall and Saad (1999). Zeng et al., (1994) worked out
the most general algebric transformation between a
hydrogen atom and a harmonic oscillator of arbitrary
dimension. Some properties of the N-dimensional
hydrogen atom were reported by -Al-Jaber (1998).
Recently, there has been emphasis on variaty of
problems: Miller (2000) examined the representations
and convergence criteria for N-dimensional lattice sums
of generalized hypergeometric functions. Fairlie and
Leznov (2000) constructed a general solution of the
complex Monge-Ampere equation in a space of arbitrary
dimension. The gquantization of a free particle on a D-
dimensional sphere through the Stuckelberg field-shifting
formalism was investigated by Neves and Watzasek
(2000).  Furthermore, Periwal (1995) proposed a
formula for continuing physical correlation functions in
higher dimensions without perturbation theory.

It is the purpose of this paper to investigate some
aspects of the infinite N-dimensional spherical potential
well. The N-dimensional Schrodinger equation is
examined. There, we derive an effective potential and
give the angular solution. We find the radial part of the
wave functions and their orthonormality and also we
examine the degeneracy of the energy levels.
The N-dimensional Schrodinger Equation:
eigenvalue equation in'N dimensions is
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,U is the reduced mass. The Laplacian operator in polar
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A is a partial differential operator on the unit sphere S
! represented as (Shimakura N. 1992)

where
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Writing the wave function in the form
WR)=RAA6,9, (@)

reduces equation (1) to two separate equations:
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where

ﬂ is a separation constant whose values are given by
(Shimakura N. 1992)

B=L{L+N-2), (7)
with L=0, 1, 2, .., and K’ =2l E-Vr))/H*. 1tis
tempting to reduce equation (6) to a one-dimensional

Schrodinger equation. This can be a chivied as follows:
Let

Ro)=riy),

where
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! is a constant to be determined. The substitution of
equation (8) into equation (6) yields

D

In order that the second term of equation (4) vanishes,
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we must have a=(1-N)/2 and thus the latter equation
becomes
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Equation (10) is the analogue of the one-dimensional
Schrodinger equation if one introduces an effective
_potential given by
N—-IAN -

V. .(r)=V(r)+7ﬁz—+—————————( 4&2 )
This gives the general form of the effective potential in
N dimensions. The second term on the right-hand side
is well known as the centrifugal barrier and its origin is
well understood (Das and Mellissinos 1988). The third
term is an additional repulsive potential (for N > 3),
which pushes the particle further away from the origin.
The case N = 2 makes the third term an attractive one.
In the usual three-dimensional space (N=3), this third
term vanishes and one recovers the usual effective
potential. The presence of this remarkable additional

_ay

potential term in ¥, (r) is another example of the role of
the topological structure of the configuration space of a
physical system in the quantum nature of the system.
The role of the topology of the configuration space in the
behavior of the system has been emphasized over the
past decade by AL-Jaber and Henneberger (1990), Ho
(1994), Ho et al:, (1996) and by Al-Jaber (1999).

Now, Let us go back to equation (5), where the solution

/(9[,(,;) are the hyperspherical harmonics,
¥"(9.6,....6,,.¢) of degree £ on the sphere S*.

For each non-negative integer E,_ the number of
hyperspherical' harmonics is given by Mahta and
Normand (1997).

_(26+N-2f¢+N-3)

n, (12)
' a(N-2)

and are characterized by a set of integers

m,m,... 44, 5 with the restrictions

0zm2my 2. 2m 2|m, | 20. (13)

The hyperspherical harmonics form an orthonormal set,

Q=68 »

and thus they form a standard orthonormal basis of the
irreducible representations of the rotation group SO(N)
in the space of square integrable functions defined over
the surface of the N-dimensional unit sphere with the
invariant measure (Shimakura, 1992)

N-2
= Msing ™ do,dg.

An Infinite N-dimensional Spherical Potential Well:
We consider an infinite spherical potential well in N
dimensions defined as V(r) = 0, for r < a; V(r)= =, for
r > a. The differential equation for the radial part of the
wave function in the region of the well is given by

(14)

(15)

equation (6) with K now is given by K’ =2uk/ K. The
solution for the differential equation

d'f (1-2a\df ayp a-pict |, (16)
2 +( . ]dx+[(bcf ) +-————x2 }/-0,

is given by (Boas, 1983)
f=elasfpx)eBN s, (17)

Where 1, and N, are the ordinary Bessel and Neumann
functions respectively, and a, b, ¢ and p are constants.
Comparing equations (6) and (16) yields a=(2-N)/2,

C=1, b=k, and p=(+(N-2)/2. Therefore, with the
help of equation (17), the solution can be readily written
down:

R(r) =?(N_2)/2[A J ¢+(N—2)/2(k7) +B Non-y z(k')]"

(18)
where A and B are constants
Since R(r) must be finite at r=0, we see that the

N(kr)term in equation (18) must be rejected due to its
singular behaviour at the origin. Hence

A
R(r) = ;(T_'Z)W J€+(N-2)/2(kr) .

It is clear that the order of the Bessel function is integer,
for even N and half-odd integer for odd N. For the usual
three-dimensional case, N=3, equation (19) gives the

(19)

well-known Spherical Bessel functions jp(kr\) which is
found in most standard quantum mechanics textbooks
(Griffits, 1995).

In order to discuss the orthonormality of the radial-part

solution, Rk, we adopt the Sturn-Liouville theory.
The differential equation (6) can be written in the form

%(rN—I S_I:)+[k2rN-| _ﬁrN—J]R=0.

The Sturn-Liouville differential equation has the form

(20)

(21)

%[p(x)%]qg(x)mw(xny:o.

It is well-known (Spiegel, 1981) that two different

" eigenfunctions y,.(x), and y/.(x), corresponding to

different eigenvalues, A, and lj, respectively, are

orthogonal in the interval a<x<b with respect to the
weight function W(x). Comparing equations (20) and
(21) yields

=)= ) =5

(22)
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and therefore the eigenfunctions R(kr) are orthogonal in
the interval o<r<g with espect to the weight function

W(r):r”". The restriction that R(k') vanishes at ¥'=qa
implies that Ju(ka)=0 ,

where

(23)

v=C+(N-2)/2. 1f we let £, and K, be the ¥-th

and the sth roots of Ju respectively then the
ort?uogonality of the corresponding eigen functions reads

‘]RU(KWr/a)R“(Kw,r/a)‘N"dr =0.

(24)

The normalization of (kr) can be obtained if one recalls
the normalization of the ordinary Bessel functions which
is (Arfken, 1985)

Upon the substitution of equation {(19) into equation (25)
we get

[Rilk r1a) a2 R i,

a)rdr:fl—z—J2
2
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”ij(K r/
’ (25)

(26)
which is the normalization relation for the radial part of
the wave function.

The energy eigenvalues of stationary states are readily

obtained with the help of equation (23) which gives

Ka= Ku}, and therefore the energy eigenvalues are
5 v
B 27)
vy 2/1 vy

It must be clear that (Abramowits and Stegum, 1972)

for a given KK, whenever )t/ and thus, by equation

. This shows that for a given (, the higher

(27) E,)E,
the dimlendion N the higher the energy (remember that

v=/+(N-2)/2).
recalls that higher dimension N implies higher degree of
freedom and thus higher energy.

Now we turn to the question of degeneracy of the energy
levels for the infinite N-dimensional potential well. For
any spherically symmetric potential in N dimensions the
Schrodinger equation can always be separated into
ordinary differential equations, one equation for the
radial part and another for the angular part. Solutions
for the angular part are the hyperspherical harmonics

Y;{'"’ - The potential that we are considering has no other
symmetries beyond rotational invariance. Therefore the
degeneracies of energy levels are the multiplicities of the

. hyperspherical harmonics for fixed f Taking into

account all possible values of m, for a given g, which

One should expect this result if he

Al-Jaber,
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are consistent with equation (13), one finds that the
degeneracy (deg) is given by

my

deg=3 5. Shmf

mta) ey

(28)

This number (deg) is equal to

n, given in equation (12). For the usual three-
dimensional case (N=3), equation (28) reduces to

£
deg=> |m|=2¢+1 (29)

£
which is easily predicted by equation (12). For
dimensions greater than three, the degeneracy
increases. This shows the effect of the dimension of the
problem on the physical behaviour of the system. This
again emphasizes the role of the topological structure of
a system on its physical behaviour.

Results and Discussion :

In this paper, a general form of the effective potential
was derived when the equation for the radial part of the
wave function is written in the form which is analogous
to the one - dimensional Schrodinger equation. This
effective potential contains, in addition to the usual
three-dimensional centrifugal term, an extra term which

is repulsive for N)3 and attractive for A(3. In order to
discuss the role of the dimension of space on the
physical behaviour of the system, we considered an
instructive example that is the infine ~dimensional
spherical potential well. For this system, we found the
eigenstates and the energy eigenvalues. The radial part
of the wave function, R(r), contains Bessel function
whose order is integer for even N and half-odd integer
for odd N. Also, the normalization condition for R(r) was
derived which has an N dependence. The energy
eigenvalues are also found to be dependent on the
dimension N. The higher the dimension the higher the
energy, this must be so since the degree of freedom
increases as the dimension N increases and thus implies
an increase in the energy. Finally, the angular part of
the wave function was presented, that is the
hyperspherical harmonics that form an orthonormal basis
of the irreducible representations of he rotation group
So(N) in the space of the square integrable functions
defined on the surface of the N-dimensional unit sphere.

The degeneracy of an energy level for a given f is given
by the number of hyperspherical harmonics given by
equation (12) and (28).
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