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a b s t r a c t

We study the spectral properties of electron quantum dots (QDs) confined in 2D parabolic harmonic

oscillator influenced by external uniform electrical and magnetic fields together with an Aharonov–

Bohm (AB) flux field. We use the Nikiforov–Uvarov method in our calculations. Exact solutions for the

energy levels and normalized wave functions are obtained for this exactly soluble quantum system.

Based on the computed one-particle energetic spectrum and wave functions, the interband optical

absorption GaAs spherical shape parabolic QDs is studied theoretically and the total optical absorption

coefficient is calculated.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

In the recent years, the subject of quantum dots (QDs) as low-
dimensional quantum systems has been the focus of extensive
theoretical investigations. Much efforts have recently been done
in understanding their electronic, optical and magnetic proper-
ties. The application of magnetic field is equivalent to introducing
an additional confining potential which modifies the transport
and optical properties of conduction-band electrons in QDs. In
addition, introducing electric field gives rise to electron redis-
tribution that makes change to the energy of quantum states
which experimentally control and modulate the intensity of
optoelectronic devices [1,2]. Indeed, it is worthwhile to investi-
gate the influence of electric and magnetic fields on the electrons
in QDs. Experimental research is currently made to investigate
the nonlinear optical and quantum properties of low-dimensional
semiconducting structures for the fabrication purposes and sub-
sequent working of electronic and optical devices [3–14].
A number of works take the effects of an electric or a magnetic
field into account in studying quantum wells, quantum wires and
QDs [9–14]. For practical and theoretical reasons, more works
analyzing these structures have been focused on the interband
ll rights reserved.

.

ir),

c.ir (M. Hamzavi),
light absorption coefficient and magnetic properties with
restricted geometries [15] of spherical [16–18], parabolic, cylind-
rical and rectangular [19] QDs and other nanostructures such as
superlatices, quantum wires, wells, antidots, well wires and
antiwells [20–22] in the presence and absence of magnetic field
[1,2]. In recent years, the rapid development in semiconductor
physics and nanostructures technology provides wide techniques
for the possibility of fabrication of low-dimensional quantum
structures like quantum wells, quantum wires and quantum dots
which can be treated with high accuracy as two-, one- and zero-
dimensional nanostructures, respectively [23].

Harmonic oscillator belongs to the most important and most
commonly used physical models. Due to the formal simplicity, it is
considered as one of the exactly solvable quantum mechanical
problems. It is used to model a wide variety of phenomena ranging
from molecular vibrations to the behaviour of quantized fields. The
Schrödinger equation for an electron in a uniform magnetic field
confined by a harmonic oscillator type potential was solved in 1928
by Fock [24] and Darwin [25]. There are many recent studies on n-
particle systems confined in a nonrelativistic harmonic oscillator
potential [26] and rotation–vibration spectra of diatomic molecules
[27]. Harmonic oscillator potential may be used to describe spatial
confinement of quantum objects, the effects of embedding particles
in nano-cavities, in fullerenes, in liquid helium [28,29].

A relativistic harmonic oscillator is far from being trivial and is
not unique. Nikolsky [30] and Postepska [31] studied Dirac equation
for an electron in the field of a quadratic potential. The eigenvalue
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problem reduces to a quartic equation with no bound solutions.
Toyama and Nogami [32] discussed the relativistic systems which
have infinite number of bound states whose energy states are all
equally spaced using the inverse scattering method [33]. An
approach leading to the Dirac oscillator based on construction of
exactly solvable Dirac equation which in the non-relativistic limit
reduces to the Schrödinger harmonic oscillator equation [34,35].

Recently, interband optical absorption in GaAs spherical shape
parabolic QDs in the presence of electrical and magnetic fields was
investigated by Atoyan et al. [1,2]. They solved the Schrödinger
equation for a spinless particle confined by a 2D cylindrical
harmonic oscillator potential. Su and Ma [36] solved the 3D and
1D Dirac equations with both scalar and vector harmonic oscilla-
tor potentials. Qiang [37] obtained the bound state energies and
normalized wave functions for the Klein–Gordon (KG) and Dirac
equations with equal scalar and vector harmonic oscillator poten-
tials. The 2D quantum systems can probe the connection between
classical and quantum chaos and have application in a number of
surface systems such as atomic corrals [38]. For this reason, Qiang
[39] studied the energy formulas and their corresponding normal-
ized wave functions of a 2D relativistic quantum harmonic
oscillator system for the first time. In particular, Qiang solved
the spinless (spin-0) KG and spin-1/2 Dirac equations with equal
scalar and vector harmonic oscillator potentials in 2D space and
obtained the normalized wave functions and formulas for energy.

Very recently, we have studied the exact analytical bound state
energy eigenvalues and normalized wave functions of the spinless
relativistic equation with equal scalar and vector pseudoharmonic
interaction under the effect of external uniform magnetic field and
AB flux field [40] in the framework of the Nikiforov–Uvarov (NU)
method [41–44]. The non-relativistic limit of our solution is
obtained by making an appropriate mapping of parameters. Further,
the KG-pseudoharmonic and KG-harmonic oscillator special cases
are also treated. Furthermore, we carried out detailed exact ener-
getic spectrum and wave functions of the Schrödinger equation with
a pseudoharmonic potential in the presence of external magnetic
and AB flux fields [45]. The low-lying energy levels serve as a base
for calculating the corresponding interband light (optical) absorp-
tion coefficient and the threshold frequency value of absorption for
the given model. In addition, the effect of the temperature on the
effective mass is also calculated for GaAs semiconductor.

An attempt is made in this paper to investigate the Schrödin-
ger equation describing a spinless particle confined by a 2D
parabolic harmonic oscillator potential when external uniform
electrical and magnetic fields are applied together with Aharo-
nov–Bohm (AB) flux field. We obtain the energy spectra and wave
functions in the non-relativistic harmonic oscillators. So, we solve
the Schrödinger equation in Refs. [1,2] in the presence of AB flux
field too. The NU method [41–44] is used in the present solution.
In addition, the interband light absorption coefficient and the
threshold frequency value of absorption are calculated.

The structure of the paper is organized as follows. In Section 2,
we investigate the Schrödinger particle in QDs confinement 2D
parabolic harmonic oscillator potential when electrical and mag-
netic fields together with Aharonov–Bohm (AB) flux fields are
applied in the framework of the NU method. The exact analytical
expressions for the energy formulas and normalized wave func-
tions are calculated. We also calculate the direct interband light
absorption coefficient and the threshold frequency of absorption.
The paper ends with a brief concluding remarks in Section 3.
2. Theory and calculations

In this section, we shall consider the solution of spinless
Schrödinger equation for the harmonic oscillator potential influenced
by electrical, magnetic and AB flux fields. The NU method [41–44]
which has been proved its success is used in our treatment.

2.1. Bound-state solutions of the 2D harmonic oscillators

Consider a 2D single charged electron, e, with an electronic
effective mass m (for GaAs, m¼ 0:067m0) in the conduction band,
confined to a parabolic potential like quantum dots (QDs). We
will study the spectral properties with QDs confinement parabolic
harmonic oscillator potential influenced by uniform electrical and
magnetic fields together with an Aharonov-Bohm (AB) flux field,
applied simultaneously. In cylindrical coordinates, the Schrödin-
ger equation describing a spinless (spin-0) electron in such a
quantum system is usually written in the form [46]

1
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where o is the frequency of QDs measuring the strength of
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2 describes the additional magnetic flux
FAB created by a solenoid inserted inside the QDs. Hence, the
vector potentials have azimuthal components, in the cylindrical
coordinate system, given by Refs. [40,45,47,48]
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The Schrödinger equation (1) with potential (2) in cylindrical
coordinates has a form
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where c¼cðr,j,zÞ is a wave function and oc ¼ eH=mc is the
cyclotron frequency.

Let us take the wave function ansatz for an electron as

cðr,j,zÞ ¼ Rðr,jÞwðzÞ, Rðr,jÞ ¼ gðrÞeimj, m¼ 0,71,72, . . . ,

ð6Þ
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where m is the magnetic quantum number. Upon inserting the
above wave function into Eq. (5), we shall obtain equations whose
solutions are gðrÞ and wðzÞ [1,2,49]:

g00ðrÞþ 1

r g0ðrÞþ
2mEr

_2
�
moc

_
ðmþaÞ�m

2O2

4_2
r2�
ðmþaÞ2

r2

 !
gðrÞ ¼ 0,

ð7Þ

with

O¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

c þ4o2
q

, a¼ FAB

F0
, F0 ¼

hc

e
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where F0 is flux quantum and

w00ðzÞþ m
_2

2Ezþ2eEz�mo2z2
	 


wðzÞ ¼ 0: ð9Þ

Consequently, the wave function gðrÞ is required to satisfy the
boundary conditions, i.e., gð0Þ ¼ 0 and gðr-1Þ¼ 0.1 In order to
solve Eq. (7) by means of the NU method, we introduce the new
variable s¼ r2, rAð0,1Þ- sAð0,1Þ which recasts Eq. (7) as in
the following hypergeometric type differential equation:
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g¼ mO
2_

, ð11cÞ

where we have set gðrÞ � gðsÞ. Now, we apply the basic ideas of
the NU method [41–45]. Comparing Eq. (10) with the standard
form of the hypergeometric differential equation

f 00ðsÞþ
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0
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gives us the polynomials
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and further substituting the above polynomials into the expres-
sion pðsÞ
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The expression under the square root of the above equation must
be the square of a polynomial of first degree. This is possible only
if its discriminant is zero and the constant parameter k can be
determined from the condition that the expression under the
square root has a double zero. Hence, k is obtained as
kþ ,� ¼ l2=27bg. In that case, it can be written in the four
possible forms of pðsÞ

pðsÞ ¼
þðgs7bÞ for kþ ¼ 1

2l
2
1þbg,

�ðgs7bÞ for k� ¼ 1
2 l

2
1�bg:

8<: ð14Þ

One of the four possible forms of pðsÞmust be chosen to obtain an
energy spectrum formula. Therefore, the most suitable form can
be established by the choice
1 The solution of Eqs. (7) and (9) is known from Ref. [49].
pðsÞ ¼ b�gs,

for k�. The trick in this selection is to find the negative derivative
of tðsÞ given in

tðsÞ ¼ ~tðsÞþ2pðsÞ,

which yields

tðsÞ ¼ 2ð1þbÞ�2gs, t0ðsÞ ¼ �2go0: ð15Þ

In this case, it is necessary to use the quantity |n ¼�nt0ðsÞ�
ðnðn�1Þ=2Þs00ðsÞ to obtain the eigenvalue equation

|n ¼ 2gn, n¼ 0,1,2, . . . , ð16Þ

where n¼ 0,1,2, . . . is the radial quantum number. Another
eigenvalue equation is obtained via the equality |¼ k�þp0

|¼ 1
2l

2
1�gðbþ1Þ: ð17Þ

Thus to find energy equation, we let |n ¼ | and the result
obtained will depend on Er in the closed form

l2
1 ¼ 2ð2nþ1þbÞg: ð18Þ

Upon the substitution of the terms on the right-hand sides of Eqs.
(11a)–(11c) into Eq. (18), we immediately obtain the non-
equidistant magneto-optical energy spectrum for the QDs con-
finement parabolic potential as

EnmðaÞ ¼ Er ¼
1

2
_ocðmþaÞþ_oc nþ

9b9þ1
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o
oc

� �2
s

, ð19Þ

where 9b9¼ 9m9þa40 is an integer. It is apparent from Eq. (19)
that the electronic energy levels are nondegenerate for all m. We
have one set of quantum numbers ðn,m,bÞ for a spinless electron
in QDs. Therefore, the energy formula (19) may be readily used to
study the thermodynamic properties of quantum structures with
QDs confined by the harmonic oscillator potential in the presence
and absence of external magnetic field (H) and AB flux field ðFABÞ.

Four special cases are of a particular interest:
�
 In the presence of a strong magnetic field; say , oc=o¼ 30 [48],
then O-oc bo, then EnmðaÞ ¼ _oc½nþaþ 1

2 ðmþ9m9þ1Þ�
which is the formula in the presence of magnetic (H) and
AB flux ðFABÞ fields. Meanwhile, in the presence of a weak
magnetic field; say, oc=o¼ 3 [48], then we can resort to Eq.
(19).

�
 If we set a¼ 0, i.e., in the absence of AB flux field and the

presence of strong magnetic field, we find Enm ¼ _oc½nþ 1
2

ð9m9þmþ1Þ�.

�
 In the absence of magnetic field (oc ¼ 0) and an AB flux field

(a¼ 0), we find Enm ¼ _oð2nþ9m9þ1Þ.

�
 The case m¼0 is simply for harmonic oscillator energy

spectrum, i.e., En ¼ _oð2nþ1Þ.

Next, we need to calculate the corresponding wave function
for the confinement potential model. We find the first part of the
wave function by

fmðsÞ ¼ exp
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sðsÞ ds
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Then, the weight function defined by
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� �
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which gives the second part of the wave function (Rodrigues
formula) given by

ynmðsÞ ¼ yðnÞðsÞ ¼ yðsÞ ¼
Bn
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dn

drn ½snðsÞrðsÞ�,
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or alternatively

ynmðsÞ � s�9b9egs dnr

dsnr
ðsnþ 9b9e�gsÞ � L

ð9b9Þ
n ðgsÞ, ð22Þ

where LðbÞa ðxÞ ¼ ððaþbÞ!=a!b!ÞFða,bþ1; xÞ is the associated Laguerre
polynomial and Fða,bþ1; xÞ is the confluent hypergeometric
function. With the formula gðsÞ ¼fmðsÞynmðsÞ, we may write the
radial wave function as

gðrÞ ¼ Cn,mr9m9þae�gr
2=2Fð�n,9m9þaþ1; gr2Þ, ð23Þ

and finally the total wave function (6) reads
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p
is the effective length scale. The energy levels

(19) with a¼ 0 (i.e., FAB ¼ 0) become
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and the wave function (24) becomes
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�eimjr9m9e�r
2=4a2

Fð�n,9m9þ1;r2=2a2Þ: ð26Þ

which are identical to Eqs. (10) and (8) in Ref. [1], respectively. On
the other hand, Eq. (9) can be recasted in the form

w00ðzÞþð�d2z2þZ2z�E2ÞwðzÞ ¼ 0, ð27aÞ
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We follow the same procedures of solution by writing

~tðzÞ ¼ 0, sðzÞ ¼ 1, ~sðzÞ ¼�d2z2þZ2z�E2: ð28Þ

In the present case, the polynomial pðzÞ is obtained as
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and thus the two possible forms of pðzÞ are
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Therefore, the most suitable form can be established by the choice
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and tðzÞ is consequently found as

tðzÞ ¼ �2dzþZ2=d: ð31Þ

A new eigenvalue equation becomes

|nz ¼ 2dnz, nz ¼ 0,1,2, . . . , ð32Þ

where nz is the quantum number and another eigenvalue equa-
tion is obtained as

|¼
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4d2
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Hence, the energy formula reads as
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Next, we calculate the wave function wðzÞ. The first part of the
wave function is
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Þ
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, ð35Þ

and the weight function is

rðzÞ ¼ e�dðz�Z
2=2d2

Þ
2
þZ4=4d3

, ð36Þ

which gives the second part of the wave function
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where Hnz ðxÞ is the Hermite polynomial. As to electronic energy
levels, it is the sum of expressions (19) and (34):

En,nz ,mða,o,oc ,EÞ ¼ _o nþ
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e2E2
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, ð38Þ

where _oc ¼ 0:11571589 H (meV) and H is to be in units of Tesla.
Additionally, the term a¼FAB=F0 reflects the dependence of the
electronic levels on the AB flux FAB where we take a¼ 6.

As for the wave functions, it is taken as the product of Eqs. (24)
and (37):

cðr,j,zÞ ¼
a�ð1þ 9b9Þ
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p29b9þ1nr!

" #1=2
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p e�ðz�eE=mo2Þ
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Hnz ½ðz�eE=mo2Þ=b�, ð39Þ

where b¼
ffiffiffiffiffiffiffiffiffiffiffiffi
_=mo

p
. Expressions (19) and (39) obtained above for a

charge carrier energy spectrum and wave functions are identical
to Eqs. (10) and (11) in Ref. [1] and Eqs. (4) and (3) in Ref. [50],
respectively, in the case when a¼ 0.

To show the behaviour of the energy formula (38), we follow
Ref. [51] in plotting it versus oc=o under the influence of
magnetic and AB flux fields. In Fig. 1, we plot the eigenenergies
(in units _oÞ versus the ratio oc=o (a) for various AB field, a
(b) for various magnetic quantum number m and (c) for various
quantum number nz. As shown in Fig. 1a, the ground state
n¼ nz ¼ 0 (singlet state, m¼0) under the influence of the AB field
leads to the phase transition to the high-lying states n40. The
family of states for various values of a¼ 0,1,2,3,4 is non-linear in
the presence of weak magnetic field 0ooc=oo5. In Fig. 1b, the
energy eigenvalues (in units _oÞ are found increasing with the
increasing magnetic quantum number m when oc 4o. However,
when oc oo, we notice the crossing between m¼1 and m¼�1
states. As shown in Fig. 1c, the ground state n¼m¼ 0 leads to the
phase transition to the high-lying states n40 when the quantum
number nz is increasing. As nz is increasing we have a family of
states for various nz ¼ 0,1,2,3,4.

2.2. Interband light absorption coefficient

Expressions (38) and (39), obtained above for electronic
energy spectrum and corresponding wave functions in cylindrical
QDs influenced by external uniform electrical and magnetic fields
along with an AB flux field, allow us to calculate the direct
interband light absorption coefficient KðoÞ in the present system
and the threshold frequency of absorption. In case of strong size
quantization in which it is possible to neglect the electron-hole
interactions. According to Ref. [52], the light absorption



Fig. 1. Eigenenergies (in units _oÞ versus the ratio oc=o for (a) various AB fields a, (b) various magnetic quantum numbers m and (c) various quantum numbers nz.
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coefficient is

KðoÞ ¼N
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X
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where D¼ _o�eg , eg is the width of forbidden energy gap, o is
the frequency of incident light, N is a quantity proportional to the
square of dipole moment matrix element modulus, ceðhÞ is the
wave function of the electron (hole) and EeðhÞ is the corresponding
energy of the electron (hole).

Now, we use the integrals [53]Z 2p

0
eiðmþm0 Þf df¼

2p if m¼�m0,

0 if ma�m0,

(
ð41Þ
Z 1
0
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and

Inn0 ¼

Z 1
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dz,

where GðxÞ is the Euler–Gamma function and 2F1ða,b,c; zÞ is the
hypergeometric function, to calculate the light absorption coeffi-
cient

KðoÞ ¼N
X

n,m,b

X
n0 ,m0 ,b0

Pb
n,n0Q

b
n,n0dðD�Ee

n,m,b�Eh
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Fig. 3. The variations in the threshold frequency of absorption o00 (in units of eg)

as a function of quantum dot size (in unit of r).
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and

Qb
n,n0 ¼

2
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4gg0

ðg�g0Þ2

 !" #2
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e
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2a2
h
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Using Eq. (38), we find the threshold frequency value of absorp-
tion as

_o ¼ egþ_ nþ
9m9þaþ1
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For ground state, we set n¼m¼ 0 in the above expression to
obtain the threshold frequency of absorption

o00 ¼
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þ
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We follow Ref. [54] in plotting the threshold frequency of
absorption o00 (in units of eg) versus the magnetic field strength
H and quantum dot size considering various AB magnetic flux
values a¼ 0,1,2,3. In Fig. 2, we plot the variations of threshold
frequency of absorption o00 (in units of eg) as a function of
applied (a) large magnetic field and (b) small magnetic field in
unit of h¼ ðe_H=mcegÞ with r¼ 89:53. It is seen from Fig. 2a
(Fig. 2b) that the dependence of o00 on H is linear (nonlinear) for
large (small) applied magnetic fields. The main feature in the
application of the AB flux field leads to a family of the phase
transition for the ground state n¼ 0, mainly a¼ 0,1,2,3 leads to a
phase transitions for the high-lying states n40. In Fig. 3, we plot
the threshold frequency of absorption o00 (in units of eg) as a

function of quantum dot size (in unit of r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eg=o_

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meg=_

2
q

r0)

(see Eq. (3)) with h¼0.062. It is seen in Fig. 3 that the threshold
Fig. 2. The variations of threshold frequency of absorption o00 (in units of eg) as a fun
frequency of absorption decreases when the quantum dot size
increasing. The application of AB flux field FAB generates a family
of state transitions for a¼FAB=F0 ¼ 0,1,2,3.
3. Concluding remarks

In this work, we have obtained the bound state solutions of the
Schrödinger spinless particle in QDs confined to non-relativistic
harmonic oscillator in the presence of electrical, magnetic and AB
flux fields. The electron (hole) energy spectrum and the corre-
sponding wave functions are used to calculate the interband light
absorption coefficient and the threshold frequency of absorption.
Also, the energy spectrum of the electron may be used to study
the thermodynamic properties of quantum structures with dot in
electrical, magnetic and AB flux fields. The electronic energy
ction of applied (a) large magnetic field and (b) small magnetic field (in unit of h).
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levels make a shift under the effect of an external electrical field
by an amount DE¼�e2E2=ð2mo2Þ. It explains the Stark splitting
quadratic dependence on E

!
. The energy levels in the presence of

external electrical field of different strengths are nondegenerate.
The threshold frequency of absorption o00 rises on the field E

!
by

quadratic law and has also more complicated dependence on the
magnetic field H

!
. Further, it is noticed that the spinless particle

(electron) is localized along the z-axis inside the QDs.
In the quantum mechanics there is a relevant relationship

between 2D and 3D harmonic oscillator [35] in the Schrödinger
theory with the changes r2r and 9m92lþ1=2.
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