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Abstract: 

Strongly singular potentials in one dimension are analyzed, namely the nth 

derivative interaction    xn .  For the repulsive case, the reflection and transmission 

coefficients are derived.  It is shown that for n = even, these coefficients satisfy the 
unitarity of the scattering matrix for all values of the incident energy and the barrier 
becomes perfectly reflective for a specific value of the energy.  For n=odd 1 , 
however, the coefficients do not satisfy the unitarity of the scattering matrix except for 
one specific value of the incident energy at which the barrier becomes perfectly 
reflective.  For the n=1 case, the results showed that the coefficients satisfy the unitarity 
of the scattering matrix.  For the attractive case, both the bound states and the scattering 
states are examined.  It is shown that, for n=even 0 , there exist two bound states and 
only one bound state for n=0.  For the scattering states, it is demonstrated that one 
recovers the same coefficients that were obtained for the repulsive case. 
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  :ملخص

لقد تمّ تحليل جهود قوية القطبية في بعد واحد وبالتحديد تفاعلات المشتقة النونية    xn .  حالـة  فـي
زوجي، هذه المعـاملات تحقـق وحدانيـة    =  nتبيّن انه، عندما . التنافر، تم اشتقاق معاملات الانعكاس والنفاذ

. مصفوفة التشتت لجميع قيم الطاقة الساقطة وان الجهد الفاصل يصبح عاكساً مثالياً لقيم محدده للطاقة السـاقطه 
هذه المعاملات لا تحقق وحدانية مصفوفة التشتت الا عند قيمه واحده محدده ، فان  1فردي = n لكن عندما 

، فان النتائج أشارت الى ان n = 1أما في حاله . للطاقة الساقطة والتي عندها يصبح الجهد الفاصل عاكساً مثالياً 
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تبـيّن  . ط والتشتتفي حالة التجاذب، تمّ فحص كلا من حالات الرب.  المعاملات تحقق وحدانية مصفوفة التشتت
أما حالات . صفر=  nصفر، يوجد حالتي ربط بينما يوجد حالة ربط واحده عندما  زوجي =  nحاله في أنه 

  .التشتت، فقد لوحظ انه بالامكان استرجاع المعاملات نفسها التي تم الحصول عليها في حالة التنافر
 
1 - Introduction 
 Strongly singular potentials (or the so called zero-range) 
potentials or point interactions) attracted the attention of researchers 
since early eighties [1-6].  Quantum mechanics on graphs has been 
revived in the last decade [7-10], as a response to the rapid progress of 
fabrication techniques which allow us to produce graph-like structures of 
a pure semiconductor material, for which graph Hamiltonians represent a 
natural model.  In recent years there was an emphasis on the so-called '  
interaction that is one of point interactions [11-14], and especially the 
scattering S-Matrix [15, 16].  Just recently, a proposed coordinate space 
regularization of a three-body problem with zero-range potentials was 
reported [17].  Furthermore, the scattering of nonrelativistic particles in 
three and lower dimensions was recently considered [18].  A close 
examination has been carried out to the boundary conditions for point 
interactions [11, 13, 19, 20].  Recently, the present author considered an 
exactly solvable model, namely the repulsive and attractive    potential 
[21]. 
 
 Recently, an intensive work has been carried out concerning 
gravitational radiation and black hole formation in D-dimensional space 
times [22-25].  This involves the D-dimensional retarded Green’s 
function as solution of the homogeneous Einstein’s equations.  As is 
shown in [22], the D-dimensional retarded Green’s function contains 
higher derivatives of delta functions. 
 
 The purpose of this paper is to examine a strongly singular 
potential, namely the nth derivative of delta-function potential.  In sect. 2, 
the repulsive  n  potential is considered and  the reflection and 
transmission coefficients  for both n=even and n=odd are derived.  In 
sect. 3, the attractive  n  potential is examined and both bound states 
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and scattering states  for n=even and n=odd are considered.  Sect. 4 is 
devoted for results and discussion. 
 
2 - A repulsive nth derivative of a delta-function 
potential 
 
  In this section the reflection and transmission coefficients for the 
nth derivative of a delta-function potential are presented. The potential 
has the form  
 
      ,xxV n       (1) 
 
where   is a real positive constant and is a measure of the strength of the 
potential.  The time-independent Schrodinger equation for this potential 
is 
 

     .
2 2

22


Ex

dx

d

m
n 

 
    (2) 

 
Considering a particle incident from the left, the solution for equation (2) 
is 
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where 22 /2 mEk  , and the absence of the term ikxe  for 0x  is 
understood for a wave incident from the left.  Griffiths [13] correctly 
derived the boundary conditions for  x  and  x  , namely 
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      ,0
2

1
2

nn m 


      (5) 

 
where  0  is defined as 
 

         00
2

1
0  .     (6) 

 
 One may apply the above boundary conditions to the wave function in 
eq. (3). To that end, the following is derived 
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and thus, with the help of eq. (6), 
 

         DBik nnn 11
2

1
0 11   .    (7) 
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and thus 
 

         DBik nnn 11
2

1
0  .    (8) 

 
The substitution of eq. (7) into Eq. (4), and eq. (8) into eq. (5) gives 
 

       DBikn
m

DB nn 111 1

2
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
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       DBik
m

DBik nn 111
2





.   (10) 

 
For simplicity, let 
 
 ,/ 2mc         (11) 
 
and after some algebra, one can get 
 

    ,21
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In order to find the reflection coefficient  2
DR   and the transmission 

coefficient  2
BT   one may consider the two cases n=even and n = odd 

 
case 1:  n = even 
Eq. (13) yields 
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and thus the reflection and the transmission coefficients are respectively 
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The special case n = 0 corresponds to the usual delta-function and our 
results yield the well-known values for R and T which are found in most 
standard quantum mechanics textbooks [22] namely 
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It is interesting to note that if 
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and this happens when 
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which means that the barrier becomes totally reflective.  It is also very 
clear that R and T in eq’s (15) and (16) satisfy the unitarity of the 
scattering matrix, i.e R+T = 1.  This implies that the Hamiltonian under 
investigation (for n = even) is a self-adjoint operator.  One could easily 
check that 1T  for the high-energy behavior by simply taking the limit 
of T as 2k . 
 
 Furthermore, eq. (15) shows that, for a given energy, the barrier 
becomes reflectiveless (R = 0 ) for very week strength parameter   
(remember 2/ mc  ). 
 
Case 2:  n = odd 
Eq. (13) gives for odd n 
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and, with the help of eq. (12), one can get 
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Therefore, the reflection and transmission coefficients are respectively 
given by 
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It is very useful to let 1 nkcx , so that  
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It is easy to show that 
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and thus if the second term vanishes then R and T satisfy the unitarity of 
the scattering matrix, i.e. R+T = 1.  This occurs when 
 

       .01111 2
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Clearly, n = 1 satisfies eq. (25) and in this case equations (22) and (23) 
give 
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which means that the Hamiltonian for the  x   potential is a self-adjoint 
operator for all values of x. 
For 1n , eq. (25) is rewritten as 
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whose positive root is 
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and the negative root is neglected since x is positive only.  Eq. (28) 
shows two cases: 
 
a) n = 3 Mod 4, then x = 1/n and hence eq’s (22) and (23) yield R = 

1 and T = 0.  This implies that in this case (n = 3 mod 4) the 
barrier is perfectly reflective when nkc n /11   and hence the 
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corresponding Hamiltonian is a self-adjoint operator.  This occurs 

if and only if    
./

2

1/22
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
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n
mn

m
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b) n = 5 Mod 4, then x = 1, and hence eq’s (22) and (23) give R = 1 

and T = 0.  Therefore. In this case, the barrier is perfectly 
reflective when 11 nkc  and thus the corresponding 
Hamiltonian is a self-adjoint operator.  This occurs when 
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  A final remark for the n=odd case is that 

one could easily check that 0R  and 1T  for the high 
energy behavior by simply taking the limits of R and T as x  
in equations (22) and (23.  Also, for a given energy the barrier 
becomes reflectiveless  0R  for very weak strength parameter 
 . 

 
3 - An attractive nth derivative of a delta-function potential 
 
  Consider a potential of the form 
 
      xxV n       (29) 
 
 The Schrodinger equation reads 
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m
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and one may need to examine both the bound states  0E  and the 

scattering states  0E . 
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3.1. Bound states:  Equation (30), with 22 /2 Emk   and 
2/ mc   as before, can be written as: 
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 For 0x , we have 
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 Here it is assumed that  x  is squared integrable and hence 
vanishes as   x .  In order to apply the boundary conditions given 
in equations (4) and (5), one calculates 
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and thus, with the help of eq. (6), one can find 
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          .
2

1
0 111   nnn kBkA  

 
Therefore, the substitution of the above relations into equations (4) and 
(5) yields 
 

      ,1 11 BAkcnBA nn       (34) 
 

        .11 BAkcBAk nnn      (35) 
 
Solving the above equations gives 
 

         ,1122 111 nnkcnckc nnn     (36) 
 
which yields the energy of the bound states.  One may  consider both 
cases n = even and n = odd. 
 
Case 1:  n = even 
First the special case n = 0 is considered separately.  Eq. (36) for n = 0 
gives k = -c and thus by substituting the values of k and c, one can get,  
 

 
2

2



m
E   .       (37) 

 
So the attractive delta function potential has one bound state with the 
above energy as is well-known in standard quantum mechanics textbooks 
[22].  Eq. (36) for n = even can be written as 
 
   ,0112  xnxn      (38) 
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where as before 1 nkcx .  The roots of the above equation are x = -1 

and 1/n.  For ckx n /1:1 1    and this gives  
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This indicates that there are two bound states for each even n with the 
above energies. 
 
Case 2:  n = odd 
Eq. (36) yields 
 

  ,
1
2

12

cn
k n 
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and since 2k  is negative and n = odd, the quantity  12 nk  is positive.  
Therefore eq. (41) can not hold for real c.  This implies that the potential 
for n = odd has no bound states. 
 
3.2. Scattering states.  
 

The simplest way to study scattering states is to change the sign 
of   in the repulsive case discussed in section 2.  This implies that c 
must be replaced by –c.  By so doing, the reflection and transmission 
coefficients, given in equations (15) and (16), for n = even remain 
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unchanged.  The case n = odd needs little modification but the outcome 
physics remains the same.  First the special case n = 1 is unchanged, as it 
seen from eq. (26), when x is replaced by –x.  For 1n , the reflection 
coefficient remains unchanged, see eq. (22), but the transmission 
coefficient is, slightly changed.  The third term in eq. (23) would acquire 
a negative sign when x is replaced by –x.  Therefore the requirement for 
the unitarity of the scattering matrix, given in eq. (27), becomes 
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whose positive root is 
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Eq. (43) now shows that if n = 3 Mod 4 then  x = 1 and hence 

eq’s (22) and (23) yield R = 1 and T = 0.  This means that the barrier is 
perfectly reflective when   11  nkcx  and thus the corresponding 
Hamiltonian is self-adjoint.  The above root also shows that if n = 5 Mod 
4 then x = 1/n, and hence eq’s (22) and (23) yield R=1 and T=0.  Again, 
the barrier in this case is perfectly reflective when nkc n /11  , and the 
corresponding Hamiltonian is self-adjoint.  Therefore for the scattering 
states the replacement of   by -  keeps the physics outcome 
unchanged.  This shows that the particle is just as likely to pass through 
the barrier as to cross over the well when 1nkc  is chosen properly.  
Thus, all our remarks concerning the high energy behavior and the weak 
strength parameter remain the same as for the repulsive potential case. 
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4 - Results and discussion 
 
 In this paper an exactly solvable model of point interactions in 
one dimension is considered.  Namely the nth derivative of a delta 
function potential is analyzed.  For the repulsive case, the transmission 
and reflection coefficients are derived.  For n=even:  It was shown that R 
and T satisfy the unitarity of the scattering matrix for all values of the 
incident energy which implies that the corresponding Hamiltonian is self-
adjoint.  Our results yield the well-known values of R and T of the 
repulsive delta function potential, i.e when n=0.  The results show that 
the barrier becomes perfectly reflective when the incident particle has 

energy .
)1/(1
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For n=odd:  Our results for n=1 (i.e    potential) yield reflection 

and transmission coefficient that satisfy the unitarity of the scattering 
matrix for all values of the incident particle’s energy.  For n=3 Mod 4, 
the barrier is perfectly reflective if and only if the incident particle has 

energy 
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.  For n=5 Mod 4, the barrier is perfectly 

reflective if and only if the incident particle has energy 
)1/(222
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n

mm
E


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.  Thus for n=odd 1 , the corresponding 

Hamiltonian is not self-adjoint except for the above two values of the 
incident energy.  It was also shown that for both cases of n even and odd 
the barrier becomes reflectiveless for the high energy behavior and for 
the very weak strength parameter  . 
 
For the attractive potential, the bound states for n=even were derived and 
it was found that there is only one bound state when n=o and two bound 
states when 0n .  For n=odd it was shown that there is no bound states 
and thus the potential can not bind the particle.  The scattering states 
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were considered and it was shown that the particle is just likely to pass 
through the barrier as to cross over the well. 
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