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Abstract:

Strongly singular potentials in one dimension are analyzed, namely the n"
derivative interaction 5(")(X). For the repulsive case, the reflection and transmission

coefficients are derived. It is shown that for n = even, these coefficients satisfy the
unitarity of the scattering matrix for all values of the incident energy and the barrier

becomes perfectly reflective for a specific value of the energy. For n=odd #1,
however, the coefficients do not satisfy the unitarity of the scattering matrix except for
one specific value of the incident energy at which the barrier becomes perfectly
reflective. For the n=1 case, the results showed that the coefficients satisfy the unitarity
of the scattering matrix. For the attractive case, both the bound states and the scattering
states are examined. It is shown that, for n=even # O, there exist two bound states and

only one bound state for n=0. For the scattering states, it is demonstrated that one
recovers the same coefficients that were obtained for the repulsive case.
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1-  Introduction

Strongly singular potentials (or the so called zero-range)
potentials or point interactions) attracted the attention of researchers
since early eighties [1-6]. Quantum mechanics on graphs has been
revived in the last decade [7-10], as a response to the rapid progress of
fabrication techniques which allow us to produce graph-like structures of
a pure semiconductor material, for which graph Hamiltonians represent a
natural model. In recent years there was an emphasis on the so-called &'
interaction that is one of point interactions [11-14], and especially the
scattering S-Matrix [15, 16]. Just recently, a proposed coordinate space
regularization of a three-body problem with zero-range potentials was
reported [17]. Furthermore, the scattering of nonrelativistic particles in
three and lower dimensions was recently considered [18]. A close
examination has been carried out to the boundary conditions for point
interactions [11, 13, 19, 20]. Recently, the present author considered an
exactly solvable model, namely the repulsive and attractive ¢” potential
[21].

Recently, an intensive work has been carried out concerning
gravitational radiation and black hole formation in D-dimensional space
times [22-25]. This involves the D-dimensional retarded Green’s
function as solution of the homogeneous Einstein’s equations. AS is
shown in [22], the D-dimensional retarded Green’s function contains
higher derivatives of delta functions.

The purpose of this paper is to examine a strongly singular
potential, namely the n™ derivative of delta-function potential. In sect. 2,

the repulsive 5™ potential is considered and the reflection and
transmission coefficients for both n=even and n=odd are derived. In

sect. 3, the attractive 5" potential is examined and both bound states
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and scattering states for n=even and n=odd are considered. Sect. 4 is
devoted for results and discussion.

2- A repulsive n" derivative of a delta-function
potential

In this section the reflection and transmission coefficients for the
n™ derivative of a delta-function potential are presented. The potential
has the form

V(x)= @™ (x) (1)

where « is a real positive constant and is a measure of the strength of the
potential. The time-independent Schrodinger equation for this potential
is

-n? d*y

o O +a§(”)(x)y/:Ey/. (2)

Considering a particle incident from the left, the solution for equation (2)
IS

_ eikx +D éikx, X<O
'//(X)— {B el x)0 (3)

where k? =2mE/#?, and the absence of the term &" for x)0 is
understood for a wave incident from the left. Griffiths [13] correctly
derived the boundary conditions for y(x) and y'(x), namely

n 2 (o
Ay = (1) g (0), @
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Ay’ = (1 22500, ©)

where i7(0) is defined as

7O =Slw(0 )+ w0, ©)

One may apply the above boundary conditions to the wave function in
eg. (3). To that end, the following is derived

ikx n-1 —ikx
(1) () = (k)" e +(—1) De™, x(0
v 0= k) { o h

and thus, with the help of eq. (6),

7 (0)=2 () [B+1-(-1 D] ™
p0 - 1T

and thus
7(0)=2 (i) [B+1+ (-1 D] ®)

The substitution of eq. (7) into Eq. (4), and eq. (8) into eq. (5) gives

B—(L+ D):%n(—ik)”‘l[B +1-(-1)" D] ©)
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ik(B -1+ D):%(—ik)”[B +1+(-1" D], (10)
For simplicity, let

c=malh?, (11)

and after some algebra, one can get

D . \n-1
B=1+—[1- 2 k , 12
+1+n[ n + 2cn(ik) ] (12)

2c(n+1)(-12)"(ik)™*
[2 +2cn(ik)" —(-2)" c(ik)”‘l{l— n-+2cn(ik)" +(=1)" 1+ n)}] =

In order to find the reflection coefficient R(: |D|2) and the transmission

coefficient T(= |B|2) one may consider the two cases n=even and n = odd

case 1. n=even
Eq. (13) yields

D c(n +1)ik)"™"

C1+ne? (k) +o(n—1)ik)"™ 14

and thus the reflection and the transmission coefficients are respectively
B c?(n+1)* k>
@+nc’k®?)? +c*(n—1)"k*"?

(15)

(1—n(:2k2“‘2)2
(L+nc?k>2f +(1—n)Pc’k>™?

T= (16)
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The special case n = 0 corresponds to the usual delta-function and our
results yield the well-known values for R and T which are found in most
standard quantum mechanics textbooks [22] namely

c? k?2

R= and T = .
k? +¢? c?+k?

It is interesting to note that if

k22 =L then R=1, (17)
n

712 h4 1/(n-1)
and this happens when E = — oI )
2m\nm°ea

which means that the barrier becomes totally reflective. It is also very
clear that R and T in eq’s (15) and (16) satisfy the unitarity of the
scattering matrix, i.e R+T = 1. This implies that the Hamiltonian under
investigation (for n = even) is a self-adjoint operator. One could easily
check that T — 1 for the high-energy behavior by simply taking the limit

of Tas k? - .

Furthermore, eq. (15) shows that, for a given energy, the barrier
becomes reflectiveless (R = 0 ) for very week strength parameter «

(remember ¢ = ma/#?).

Case 2: n=odd
Eq. (13) gives for odd n

—c(n+1)ik)™*
°= 1Erc2n)k(2”‘)2 ' (49)

An-Najah Univ. J. Res. (N. Sc.), Vol. 19, 2005




Sami Al-Jaber 173

and, with the help of eq. (12), one can get

1-nc’k®? +c(n —1)ik)™™
1+nc?k??

B= (19)

Therefore, the reflection and transmission coefficients are respectively
given by

_c’(n+1)°k*?
1+nc’k>? )

(20)

T (L-nc2k?2 ) +¢?(n—1)°k>"2 + 2¢(n —1)(—1)n7_1k”‘1(1— nc?k?"2)
(1+ nc’k*"? )2 '

(21)

It is very useful to let x =ck"™, so that

C(n+1)x?
e )
2 1
T (L-nx?) +(n-1)*x> +2(n2—1)x(1—nx2)(—1) 2 23)
(L+nx?)
It is easy to show that
2 2 2 —
AT —1. 2X (n—1) +2x(n - 1)1 —nx?[-1) | 24)

(L+nx2f
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and thus if the second term vanishes then R and T satisfy the unitarity of
the scattering matrix, i.e. R+T = 1. This occurs when

x(n—1) +(n—1)1 - nx? - 1)n7_1 =0. (25)

Clearly, n = 1 satisfies eq. (25) and in this case equations (22) and (23)
give

4x? 1-x2Yf
R=——— | T = , 26
e x' ] et f 20)

which means that the Hamiltonian for the &'(x) potential is a self-adjoint

operator for all values of x.
For n=1, eq. (25) is rewritten as

n-1

nx? —(n-1)(-1)2 x-1=0 , 27)

whose positive root is
n-1 n-1
n(1+(—1)2j+(1—(—l)2j

and the negative root is neglected since x is positive only. Eq. (28)
shows two cases:

X =

, (28)

a) n =3 Mod 4, then x = 1/n and hence eq’s (22) and (23) yield R =
1and T = 0. This implies that in this case (n = 3 mod 4) the

barrier is perfectly reflective when ck"* =1/n and hence the
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b)

corresponding Hamiltonian is a self-adjoint operator. This occurs
(n2/n ma)y(nfl).

h2
ifand only if E =—
2m

n =5 Mod 4, then x = 1, and hence eq’s (22) and (23) give R =1
and T = 0. Therefore. In this case, the barrier is perfectly
reflective  when ck" =1 and thus the corresponding
Hamiltonian is a self-adjoint operator. This occurs when

2 2 \2/(n-1)
E :;l_[_j . A final remark for the n=odd case is that
m\ ma

one could easily check that R—>0 and T —1 for the high
energy behavior by simply taking the limits of R and T as X —
in equations (22) and (23. Also, for a given energy the barrier
becomes reflectiveless (R — 0) for very weak strength parameter

o .

An attractive n derivative of a delta-function potential
Consider a potential of the form

V(x)=-as™(x) (29)

The Schrodinger equation reads

IV 5= (), (30)

and one may need to examine both the bound states (E(0) and the
scattering states (E)0).

An-Najah Univ. J. Res. (N. Sc.), Vol. 19, 2005




176 “Strongly Singular Potentials in One Dimension™

31. Bound states:  Equation (30), with k?=2m|E|/7® and

c =ma/k* as before, can be written as:

d ;‘/;SX) —k2p(x) = —2¢ 5™ (x)p(x). (31)

For x =0, we have

dz‘//(x) 2 _
—7 K=o, (32)

whose general solution is

(33)

=kx
()= {A e x)0

Be*, x(0
Here it is assumed that z//(x) is squared integrable and hence

vanishes as x—to. In order to apply the boundary conditions given
in equations (4) and (5), one calculates

(M (y)— A(_k)n e, x)0
V(0 {B(k)n I

n(y)_ JACK) T ES, x)0
W (X) {B(k)n—l ekx ’ X<O

and thus, with the help of eq. (6), one can find

7" (0)= %[A(— k) +B(k)']
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7 (0)=Z A k)" + B,

Therefore, the substitution of the above relations into equations (4) and
(5) yields

A-B=nc(-k)"*|AC1)"" +B], (34)

—Kk(A+B)=(-1)"ck"|A(-1)" +B]. (35)
Solving the above equations gives

c-2(-k)" =clene(k)" ~ (n-1)-1)"" +n], (36)

which yields the energy of the bound states. One may consider both
cases n = even and n = odd.

Case 1: n=even
First the special case n = 0 is considered separately. Eq. (36) forn =0
gives k = -c and thus by substituting the values of k and c, one can get,

ma?

E=——>

(37)

So the attractive delta function potential has one bound state with the
above energy as is well-known in standard quantum mechanics textbooks
[22]. Eg. (36) for n = even can be written as

nx?+(n-1)x-1=0, (38)
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where as before x =ck"™". The roots of the above equation are x = -1
and 1/n. For x=-1:k"* =—1/c and this gives

1
—hK* K2 \n1
o (ﬂ} | 39)
For x=t: koL and this gives
n nc
a2 e
== n’m’a’ (ﬂj ' (40)

This indicates that there are two bound states for each even n with the
above energies.

Case 2: n=odd
Eq. (36) yields
k2 = n_clz , (41)

and since k? is negative and n = odd, the quantity k2" is positive.

Therefore eq. (41) can not hold for real c. This implies that the potential
for n = odd has no bound states.

3.2.  Scattering states.

The simplest way to study scattering states is to change the sign
of « in the repulsive case discussed in section 2. This implies that ¢
must be replaced by —c. By so doing, the reflection and transmission
coefficients, given in equations (15) and (16), for n = even remain
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unchanged. The case n = odd needs little modification but the outcome
physics remains the same. First the special case n = 1 is unchanged, as it
seen from eq. (26), when x is replaced by —x. For n =1, the reflection
coefficient remains unchanged, see eq. (22), but the transmission
coefficient is, slightly changed. The third term in eq. (23) would acquire
a negative sign when x is replaced by —x. Therefore the requirement for
the unitarity of the scattering matrix, given in eq. (27), becomes

n-1
nx?+(n-1)-1)z x-1=0, (42)
whose positive root is

X= n(l—(—l)nzlj+(l+(—l)nzlj | "

2n

Eq. (43) now shows that if n = 3 Mod 4 then x =1 and hence
eq’s (22) and (23) yield R =1 and T = 0. This means that the barrier is

perfectly reflective when x(:ck”’l):l and thus the corresponding

Hamiltonian is self-adjoint. The above root also shows that if n =5 Mod
4 then x = 1/n, and hence eq’s (22) and (23) yield R=1 and T=0. Again,

the barrier in this case is perfectly reflective when ck"™* =1/n, and the

corresponding Hamiltonian is self-adjoint. Therefore for the scattering
states the replacement of « by -a keeps the physics outcome
unchanged. This shows that the particle is just as likely to pass through

the barrier as to cross over the well when ck"™* is chosen properly.

Thus, all our remarks concerning the high energy behavior and the weak
strength parameter remain the same as for the repulsive potential case.
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4 - Results and discussion

In this paper an exactly solvable model of point interactions in
one dimension is considered. Namely the n™ derivative of a delta
function potential is analyzed. For the repulsive case, the transmission
and reflection coefficients are derived. For n=even: It was shown that R
and T satisfy the unitarity of the scattering matrix for all values of the
incident energy which implies that the corresponding Hamiltonian is self-
adjoint.  Our results yield the well-known values of R and T of the
repulsive delta function potential, i.e when n=0. The results show that
the barrier becomes perfectly reflective when the incident particle has

h4 1/(n-1)
energy E :( ) :

nm?a?

For n=odd: Our results for n=1 (i.e ¢’ potential) yield reflection
and transmission coefficient that satisfy the unitarity of the scattering
matrix for all values of the incident particle’s energy. For n=3 Mod 4,
the barrier is perfectly reflective if and only if the incident particle has

2m{ nme
reflective if and only if the incident particle has energy

2 2 2/(n-1)
energy E :h—( h J . For n=5 Mod 4, the barrier is perfectly

hz hz 2/(n-1)

:—[—J : Thus for n=odd =1, the corresponding
2m{ ma

Hamiltonian is not self-adjoint except for the above two values of the

incident energy. It was also shown that for both cases of n even and odd

the barrier becomes reflectiveless for the high energy behavior and for

the very weak strength parameter « .

For the attractive potential, the bound states for n=even were derived and
it was found that there is only one bound state when n=0 and two bound
states when n= 0. For n=odd it was shown that there is no bound states
and thus the potential can not bind the particle. The scattering states
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were considered and it was shown that the particle is just likely to pass
through the barrier as to cross over the well.
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