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The energy spectra of two interacting electrons, confined by a parabolic 
potential, in a magnetic field applied perpendicular to the plane of the 
quantum dot are obtained. The electron-electron interaction and the 
energy level-crossings are discussed. Comparison shows that our 
calculated spectra of the quantum dot states are in good agreement 
with those of Wagner et al. 
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1. INTRODUCTION 

WITH RECENT progress in nanofabrication tech- 
nology, it has been possible to confine electrons in all 
three spatial dimensions in semiconductor structures 
called quantum dots (QDs). In such small structures 
the electrons are fully quantized into a discrete spec- 
trum of energy levels. The confinement in z-direction, 
which is the growth direction, is assumed to be 
stronger than that in the xy-plane, so that the dots 
can be viewed as two dimensional disks. The growing 
interest in this field is motivated by the physical effects 
and the potential device applications, both as elec- 
tronic memories as well as optoelectronic devices [l] 
to which many experimental [l-5] and theoretical [6- 
18] works have been devoted. The effects of the 
magnetic field, which plays a useful role in identifying 
the absorption features, on the states of interacting 
electrons, impurity and excitons confined in the QD 
have been extensively studied. Maksym and 
Chakraborty [6] have studied the eigenstates of inter- 
acting electrons, parabolically confined in QD, .in a 
magnetic field perpendicular to the plane of the QD 
and found that the Coulomb interaction energy has an 
important effect on the magnetic field dependence of 
the energy spectrum. When the potential is quadratic, 
far-infrared (FIR) spectroscopy is unable to detect the 
Coulomb interaction by the virtue of the generalized 
Kohn’s theorem. Wagner et al. [7] have also con- 
sidered two interacting electrons, parabolically con- 
fined in a perpendicular magnetic field in addition to 
the spin and they predict the oscillations between the 

spin-singlet and the spin-triplet ground state. Pfann- 
kuche and Gerhardts [S] have made a theoretical 
study of the magneto-optical response to far-infrared 
radiation of quantum dot helium. De Groote, Hornos 
and Chaplik [9] have investigated thermodynamic 
properties of quantum dots, such as heat capacity 
and magnetization, as sensitive probes to the ground- 
state transitions. The purpose of this work is to show 
the level-crossings and the transitions in the ground- 
state energy of the interacting system against the 
magnetic field strength. 

In this work, we shall use the shifted l/N expan- 
sion method to solve the effective-mass Hamiltonian 
of two electrons and obtain the energy spectra of this 
interacting system. 

2. THEORY 

Within the effective-mass approximation (EMA), 
the Hamiltonian of an interacting pair of electrons 
confined in a quantum dot by a parabolic potential of 
the form m*&?/2 in a magnetic field applied parallel 
to the z-axis (and perpendicular to the plane where the 
electrons are restricted to move) in the symmetric 
gauge is written as follows, 

f& _!?I$ 
[ 

+4m*w26 +$L: I e2 + 
i=l +l - r21’ 

(1) 
where the two-dimensional vectors rl and t-2 describe 
the positions of the first and the second electron in the 
x-y plane, respectively. Lf stands for the z-component 
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of the orbital angular momentum for each electron and 
w, = eB/m*c, m* and c are the cyclotron frequency, 
effective mass and dielectric constant of the medium, 
respectively. The frequency w depends on both the 
magnetic field B and the confinement frequency w0 
and is given by 

potential, in an ~-dimensional space as, 

d* + (k - l)(k - 3) -- 
dr2 4r2 + W-1 $4) = &4(r), 

I 
(6) 

where k = N + 2m. 
In order to get useful results from l/i expansion, 

where R = k - a and a is a suitable shift parameter, 
the large i-limit of the potential must be suitably 
defined [ 161. Since the angular momentum barrier 
term behaves like k* at large i, so the potential 
should behave similarly. This will give rise to an 
effective potential which does not vary with k at 
large values of k, resulting in a sensible zeroth-order 
classical result. Hence Equation (6) in terms of the 
shift parameter becomes, 

/ -\ 112 
L ’ 

w= ,a+? . 
t ) (2) 

The natural units of length and energy to be used are 
the effective Bohr radius a* = di2/m*e2 and effective 
Rydberg R’ = ti2/2m*at2. The dimensionless constant 
y = hwJ2R’ pl ays the role of effective magnetic field 
strength. 

Upon introducing the center-of-mass R = (ri+ 
r2)/d and the relative coordinates r = (rl - r2)/&, 
the Hamiltonian [9] in Equation (1) can be written as a 
sum of two separable parts that represent the center-of- 
mass motion Hamiltonian, 

h2 
HR = --GO; +$J%2 ;+;> (3) 

and the relative motion Hamiltonian, 

Equation (3) describes the Hamiltonian of the har- 
monic oscillator with the well-known eigenenergies, 

E %m &m = (2n, + lrncm] + l)liw+%m,, (5) 

labeled by the radial (n, = 0, 1,2, . . .) and azimuthal 

(m,, = O,fl,12,13, . ..)q~~n~~s.~epro~ 
lem is reduced to obtaining eigenenergies En,,, of the 
relative motion Hamiltonian. The energy states of the 
total Hamiltonian are labeled by the CM and relative 
quantum numbers, In,m,; n,m). The coexistence of the 
electron-electron and the oscillator terms makes an exact 
analytic solution, using available special functions, not 
possible. 

3. THE SHIFTED l/Iv EXPANSION METHOD 

The shifted l/N expansion method, N being the 
spatial dimension, is a pseudoperturbative technique 
in the sense that it proposes a perturbation parameter 
that is not directly related to the coupling constant 
[19-211. The aspect of this method has been clearly 
stated by Imbo et al. [19, 201 who had given step-by- 
step calculations relevant to this method. Following 
their work, we present here only the analytic expressions 
which are required to determine the energy states. 

The method starts by writing the radial Schrodin- 
ger equation, for an arbitrary cylind~cally symmet~c 

d2 -- 
dr2 + 

E2[1 - (1 - a)/E][l - (3 - a)/&] +(r) 

4r2 1 
= Edt(r), (7) 

where 

V(r) =: Jz + Lwzr2 + ms 
r 4 2’ (8) 

and Q is a scaling constant to be specified from 
Equation (10). The shifted l/N expansion method 
consists of solving Equation (7) systematically in 
terms of the expansion parameter l/k. The leading 
contribution term to the energy comes from 

19) 

where r, is the ~nirn~ of the effective potential, 
given by 

2&“(r,) = Q. (10) 

It is convenient to shift the origin to r,, by the 
definition 

x = k’12(r - ro)/ro, (11) 

and to expand Equation (7) about x = 0 in powers of 
x. Comparing the c~~cients of powers of x in the 
series with the corresponding ones of the same order 
in the Schrddinger equation for a one-dimensional 
anharmonic oscillator, we determine the anharmonic 
oscillator frequency, the energy eigenvalue and the 
scaling constant in terms of E, Q, r. and the potential 
derivatives. The anharmonic frequency parameter is 

$= b+gf2, (12) 

and the energy eigenvalues in powers of I/& (up to 
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third order) read as 

E 
Jz E2 

4P 
=I_+jw22+m$+4r+t 

0 TO 

x 

[ 

(1 -a)(3-a) 1 72 

4 +Yl +-@ (13) 

where the y1 and 72 parameters can be expressed in 
terms of Q, a, 3 and n,. The shift parameter a, which 
introduces an additional degree of freedom, is chosen 
so as to make the first term in the energy series of 
order k to vanish, namely, 
_ 

$ 
[ 
(n,+j)w-y] =o, (14) 

to obtain 

a = 2 - (2n, + l)L;j, (1% 

where n, is the radial quantum number related to the 
principal (n) and magnetic (m) quantum numbers by 
the relation n, = n - [ml - 1. Energies and lengths in 
Equations (6)-( 15) are expressed in units of R* and a*, 
respectively. 

For the two-dimensional case, N = 2, Equation 
(10) takes the following form, 

d 2ri?“(r,) = 2 + 2m - a = Qli2. (16) 

Once T,, (for a particular quantum state and confining 
frequency) is determined, the task of computing the 
energy is relatively simple. 

Im I 

0.5- 

OL ’ I 
0 0.5 1 1.5 2 2.5 3 3.5 4 45 5 

woo 

Fig. 1. The total eigenenergies of the states 100; Om), 
m = 0, -1, -2,. - . . , 10, for two interacting electrons 
parabolically confined in the quantum dot of size 
lo = 3u*, as a function of the ratio w,/w,. E = 12.4 
and m* = O.O67m, for GaAs. 
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Fig. 2. The Coulomb interaction energy as a function 
of the roots calculated for quantum states 10, m), 
m=O,-l,-2 ,..., -10, w,/w, = 2 and I, = 3u*. 

4. RESULTS AND CONCLUSIONS 

Our results for QDs made of GaAs/AlGaAs are 
presented in Figs l-3 and Tables 1 and 2. The energy 
level-crossings are shown in Fig. 1. We have displayed 
the eigenenergies of the states 100; Om), m = 0, - 1, 
-2,. . . ) -10, for two interacting electrons paraboli- 
cally confined in the quantum dot of size I, = 3u* as a 
function of the ratio w,/w,. As the magnetic field 
strength increases, the energy of the state m = 0 
increases while the energy of the states with non- 
vanishing quantum number m decreases, thus leading 
to a sequence of different ground states. The reduction 
in the eigenenergies of the interacting system states 
with non-vanishing quantum number m is attributed 
to the behavior of the electron-electron Coulomb 
interaction. 

ii’ 
1 

Fig. 3. The total ground-state energy 100; 00) for two 
interacting electrons in a quantum dot of size 1, = 3~’ 
against the ratio w,/w,. (. . .) present results, (-) 
Ref. (7). 
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Table 1. The values of the Coulomb interaction energy and the roots for quantum dot states with non-vanishing 
azimuthal quantum numbers (m) calculated at 1, = 3a* and w,/w, = 2 

m 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 

To 3.692 4.222 4.801 5.363 5.890 6.384 6.847 7.285 7.700 8.096 8.473 
V,-,(r,) 0.383 0.335 0.295 0.264 0.240 0.222 0.207 0.194 0.184 0.175 0.167 

Table 2. The ground state energy (00; 00) o f t wo interacting electrons calculated by l/N expansion for quantum dot 
of size 1, = 3a* 

WC/W0 0.2 1.0 1.4 2 3 4 5 

E/R’ 0.953 1.040 1.115 1.256 1.531 1.827 2.130 

In Fig. 2, we have plotted the Coulomb interaction 
energy term V,_,( rO) x d/r,, the dominant interaction 
term in the energy series expression Equation (13) 
against the roots rO, evaluated using Equation (9) for 
particular values of w,/w, n, = 0 and m = 0, -1, 
-2,. . . , -10. As the figure shows, the interaction 
energy decreases as the roots increase, or equivalently, 
as the azimuthal quantum number m increases. The 
numerical values of the Coulomb interaction energy 
and roots are listed in Table 1. On the other hand, the 
confining energy, V,(r,) w &‘r& increases as the 
roots increase. The interplay between the electron- 
electron energy term and the confining energy term 
leads to a system with different ground states. The 
transitions in the ground state of the intem~ting system 
depends on the strength of the applied magnetic field. 

To test the accuracy of the 1 /N expansion method, 
we have compared in Fig. 3 our results for the ground- 
state energy 100; 00) of the total Hamiltonian against 
the ratio w,/wO with the results of Wagner et al. [7]. 
The present results (. . .) obviously show an excellent 
agreement with the numerical results of Ref. (7) (solid 
line). In Table 2 we have listed the energies for the 
ground state for the sake of completeness. 

In conclusion, we have obtained the energy spectra 
of two interacting electrons as a function of field 
strength for a quantum dot of a particular size. We 
have discussed the effect of the electron-electron term 
and its significance on the energy level-crossings in 
states with different azimuthal quantum numbers. The 
l/N expansion gives accurate results without putting 
constraints on the Hamiltonian of the system. 
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