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The energy spectra of two interacting electrons, confined by a parabolic
potential, in a magnetic field applied perpendicular to the plane of the
quantum dot are obtained. The electron—electron interaction and the

energvy lp\ml-prnemngc are discussed. Comparison shows that our
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calculated spectra of the quantum dot states are in good agreement

with those of Wagner et al.
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1. INTRODUCTION
WITH RECENT progress in nanofabrication tech-
nology, it has been possible to confine electrons in all
three spatial dimensions in semiconductor structures
calied quantum dots (QDs). In such smali siructures
the electrons are fully quantized into a discrete spec-
trum of energy levels. The confinement in z-direction,
which is the growth direction, is assumed to be
stronger than that in the xy-plane, so that the dots
can be viewed as two dimensional disks. The growing
interest in this field is motivated by the physical effects
and the potential device applications, both as elec-
tronic memories as well as optoelectronic devices [1]
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to which m many uz\y\.xuuuutax pi— J_| 1 and theoretical [6 [Av
18] works have been devoted. The effects of the
magnetic field, which plays a useful role in identifying
the absorption features, on the states of interacting
electrons, impurity and excitons confined in the QD
have been extensively studied. Maksym and
Chakraborty [6] have studied the eigenstates of inter-
acting electrons, parabolically confined in QD, in a
magnetic field perpendicular to the plane of the QD

and found that the Coulomb interaction energy hasan

important effect on the magnetic field dependence of
the energy spectrum. When the potential is quadratic,
far-infrared (FIR) spectroscopy is unable to detect the
Coulomb interaction by the virtue of the generalized
Kohn's theorem. Wagner et ai. [7] have aiso con-
sidered two interacting electrons, parabolically con-

fined in a ppmpnrhnnlqr magnetic field in addition to
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the spin and they predict the oscillations between the

spin—singlet and the spin—triplet ground state. Pfann-
kuche and Gerhardts [8] have made a theoretical
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radiation of quantum dot helium. De Groote, Hornos
and Chaplik [9] have investigated thermodynamic
properties of quantum dots, such as heat capacity
and magnetization, as sensitive probes to the ground-
state transitions. The purpose of this work is to show
the level-crossings and the transitions in the ground-
state energy of the interacting system against the
magnetic field strength.

In this work, we shall use the shifted 1/N expan-
sion method to solve the effective-mass Hamlltoman
of two electrons and obtain the energy spectra of this

interacting system.
2. THEORY

Within the effective-mass approximation (EMA),
the Hamiltonian of an interacting pair of electrons
confined in a quantum dot by a parabolic potential of
the form m*w’r?/2 in a magnetic field applied parallel
to the z-axis (and perpendicular to the plane where the
electrons are restricted to move) in the symmetric
gauge is written as follows,

_ [ ww
- é{ l__ 2m*

fw, ,Z-I ) e?

2 M| T elry —ry|’

1% 2
tymw

rry

2 .
ri +

(1
U

—

where the two-dimensional vectors r; and r, describe
the pnciﬁnnc of the first and the second electron in the
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x—y plane, respectively. L stands for the z-component
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of the orbital angular momentum for each electron and
w, = eB/m*c, m" and ¢ are the cyclotron frequency,
effective mass and dielectric constant of the medium,
respectively. The frequency w depends on both the
magnetic field B and the confinement frequency w,
and is given by

2\ 1/2
We
w= (w§+—4—) . )

The natural units of length and energy to be used are
the effective Bohr radius a* = eh?/m"e? and effective
Rydberg R* = h?/2m" a**. The dimensionless constant
v = hw,/2R" plays the role of effective magnetic field
strength.

Upon introducing the center-of-mass R = (r;+
r,)/v/2 and the relative coordinates r = (r, — r,)/v/2,
the Hamiltonian [9] in Equation (1) can be written as a
sum of two separable parts that represent the center-of-
mass motion Hamiltonian,

w

Hp =~ *VR+7 R+ 2‘1,35, (3)
and the relative motion Hamiltonian,

2 5 * 2
H,=~2 -V, +7 L+7——r “4)

Equation (3) describes the Hamiltonian of the har-

monic oscillator with the well-known eigenenergies,
B,

= (2ngy + |Mep| + Dhw + —

E, e 5 £ Mg, (5)

labeled by the radial (n, = 0,1,2,...) and azimuthal
(Mg, = 0,£1, 32 +3,...) quantum numbers. The prob-
lem is reduced to obtaining eigenenergies E, ,, of the
relative motion Hamiltonian. The energy states of the
total Hamiltonian are labeled by the CM and relative
quantum numbers, |#q, Mg ; 7,m). The coexistence of the
electron—electron and the oscillator terms makes an exact
analytic solution, using available special functions, not
possible.

3. THE SHIFTED 1/N EXPANSION METHOD

The shifted 1/N expansion method, N being the
spatial dimension, is a pseudoperturbative technique
in the sense that it proposes a perturbation parameter
that is not directly related to the coupling constant
[19-21]. The aspect of this method has been clearly
stated by Imbo ez al. [19, 20] who had given step-by-
step calculations relevant to this method. Following
their work, we present here only the analytic expressions
which are required to determine the energy states.

The method starts by writing the radial Schrédin-
ger equation, for an arbitrary cylindrically symmetric
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potential, in an N-dimensional space as,
& (k=1)(k-3
& (k-1)(k-3)

T dr 472 ©)

+ V() |9(r) = E(r),
where k = N + 2m.

In order to get useful results from 1/k expansion,
where k = k — a and a is a suitable shift parameter,
the large k-limit of the potential must be suitably
defined [16]. Since the angular momentum barrier
term behaves like k2 at large k, so the potential
should behave similarly. This will give rise to an
effective potential which does not vary with k at
large values of k, resulting in a sensible zeroth-order
classical result. Hence Equation (6) in terms of the
shift parameter becomes,

TR (1 — NSE — (2 o B
%a‘% LE-a a)i’:l[l (3 — a)/k| W)
= E (), (7)
where
V(r)= ){2 + f,wzrz + m% (8)

and Q is a scaling constant to be specified from
Equation (10). The shifted 1/N expansion method
consists of solving Equation (7) systematically in
terms of the expansion parameter 1/k. The leading
contribution term to the energy comes from

WAL,
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where r, is the minimum of the effective potential,
given by

23V (r,) = Q.

It is convenient to shift the origin to r, by the
definition

x=l€l/2(r_ro)/roy (11)

and to expand Equation (7) about x = 0 in powers of
x. Comparing the coefficients of powers of x in the
series with the corresponding ones of the same order
in the Schrédinger equation for a one-dimensional
anharmonic oscillator, we determine the anharmonic
oscillator frequency, the energy eigenvalue and the
scaling constant in terms of k, Q, r, and the potential
derivatives. The anharmonic frequency parameter is

1 1/2

{3 + V, (rO):I ,
Vi(ro)

and the energy eigenvalues in powers of 1/k (up to
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third order) read as

V2 L7y w, k% 1
E == r
mm =+ +m2+4r0+3
[(1-a)(3—a)
- - == 13
xl 1 +7}+kr2, (13)

where the -, and v, parameters can be expressed in
terms of Q,a,w and n,. The shift parameter @, which
introduces an additional degree of freedom, is chosen
so as to make the first term in the energy series of

rder k to vanish, namely,

k 2 -

—zfn +1)@ _@=al (14)
rs 2]

to obtain

a=2-(2n+ 1)a, (15)
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principal (n) and magnetic (m) quantum numbers by
the relation n, = n — |m| — 1. Energies and lengths in
Equations (6)—(15) are expressed in units of R* and a”,
respectively.

For the two-dimensional case, N = 2, Equation
(10) takes the following form,

2RV (r) =2+2m—a= Q"2 (16)

Once r, (for a particular quantum state and confining
frequency) is determined, the task of computing the
energy is relatively simple.
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Fig. 1. The total eigeneneroies of the states |ﬂn O\
g. ne total eigenenergics ol v om;,
m= 0 -1,-2,...,-10, for two interacting electrons

parabohcally conﬁned in the quantum dot of size
i, = 3a", as a function of the ratio w,/w,. ¢ = 12.4
and m* = 0.067m, for GaAs.
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Fig. 2. The Coulomb interaction energy as a function
of the roots calculated for quantum states |0,m),
m=0,-1,-2,...,-10,w,/w, =2 and I, = 3a"

4. RESULTS AND CONCLUSIONS
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presented in Figs 1-3 and Tables 1 and 2. h € energy
level-crnumgq are shown in Fm 1. We have dis playgd
the eigenenergies of the states [00;0m), m =0,—1,
=2,...,—10, for two interacting electrons paraboli-
cally confined in the quantum dot of size [, = 3¢" as a
function of the ratio w./w,. As the magnetic field
strength increases, the energy of the state m =10
increases while the energy of the states with non-
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to a sequence of different ground states. The reduction
in the eigenenergies of the interacting system states
with non-vanishing quantum number m is attributed
to the behavior of the electron—electron Coulomb
interaction.

{00;00>-State

E/R*
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|

Fig. 3. The total ground-state energy |00; 00) for two
interacting electrons in a quantum dot of size /, = 34"
against the ratio w,/w,. (...) present resuits, ( )
Ref. (7).
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Table 1. The values of the Coulomb interaction energy and the roots for quantum dot states with non-vanishing
azimuthal quantum numbers (m) calculated at 1, = 3a* and w,/w, = 2

m 0 ~1 -2 -3 _4 -5 -6 7 3 —9 ~10

ro 3.692 4222 4801 5363 5890 6384 6847 7.285 7700 8.096 8.473
Veelro) 0383 0335 0295 0264 0240 0222 0207 0.194 0.184 0.175 0.167

Table 2. The ground state energy |00; 00} of two interacting electrons calculated by 1/ N expansion for quantum dot
of size 1, = 3a’

W, [w, 0.2 1.0 14 2 3 4 5

E/R 0.953 1.040 1.115 1.256 1.531 1.827 2.130
In Fig. 2, we have piotted the Coulomb interaction REFERENCES

energy term V_c(r,) ~ \/5/ ro. the dominant interaction | -y pyreyjer, D. Leonard, W. Hansen, J.P. Kot-

term in the energy series expression Equation (13), thaus & P.M. Petroff, Phys. Rev. Lett. 73, 2252

against the roots r,, evaluated using Equation (9), for (1994).

particular values of w./w, n,=0 and m=0,-1, 2. C. Sikorski & U. Merkt, Phys. Rev. Lett. 62,

-2,...,~10. As the figure shows, the interaction 2164 (1989).

energy decreases as the roots increase, or equivalently, 3- T Demel, D. Heitmann, P. Grambow & K.

: : Ploog, Phys. Rev. Lett. 64, 788 (1990).
as the azimuthal quantum number m increases. The 4. A Lotke, J.P. Kothaus &’K. Ploog, Phys. Rev.

numerical values of the Coulomb interaction energy

and roots are listed in Table 1. On the other hand, the ¢ ﬁe"ttw%fgfg? (eltg 922 ) Semicond. Science and
confining energy, V,.(r,) ~ k/rl, increases as the Technol. 9, 215 (1994).

roots increase. The interplay between the electron— 6. P.A. Maksym & T.T. Chakraborty, Phys. Rev.
electron energy term and the confining energy term Lett. 65, 108 (1990).

leads to a system with different ground states. The 7. M. Wagner, U. Merkt & A.V. Chaplik, Phys.

L . . Rev. B45, 1951 (1992).
transitions in the ground state of the interacting system 8 D Pfanzxkuche & R.R. Gerhardts, Physica

depends on the strength of the applied magnetic field. B189, 6 (1993)

To test the accuracy of the 1 /N expansionmethod, 9y 1. De Groote, J.E.M. Honos & A.V. Chap-
we have compared in Fig. 3 our results for the ground- lik, Phys. Rev. B46, 12773 (1992).
state energy |00; 00) of the total Hamiltonian against 10. U. Merkt, J. Huser & M. Wagner, Phys. Rev.
the ratio w,/w, with the results of Wagner et al. [7]. B43, 7320 (1991).

The present results (...) obviously show an excellent 11- Pfannkuche & R.R. Gerhardts, Phys. Rev. B44,

. : : 13132 (1991).
agreement with the numerical results of Ref. (7) (solid 12. K.D. Zhu & S.W. Gu, Phys. Lett. A172, 296

line). In Table 2 we have listed the energies for the (1993)
ground state for the sake of completeness. 13. N.F. Johnson & M.C. Payne, Phys. Rev. Lett.
In conclusion, we have obtained the energy spectra 67, 1157 (1991).

of two interacting electrons as a function of field 14. W. Que, Phys. Rev. B45, 11036 (1992).
strength for a quantum dot of a particular size. We 15. V. Halonen, T. Chakraborty & M. Pietalainen,
have discussed the effect of the electron—electron term Phys. Rev. B45, 5980 (1992).

and its significance on the emergy level-crossings in 16. G.T. Einevoll, Phys. Rev. B4S, 3410 (1992).
states with different azimuthal quantum numbers. The 17. Y. Kayanuma, Phys. Rev. B3, 9797 (1990).
q ) 18. G.W. Bryant, Phys. Rev. Lett. 59, 1140 (1987);

1/N expansion gives accurate results without putting Phys. Rev. B37, 8763 (1988).

constraints on the Hamiltonian of the system. 19. T.Imbo, A. Pagnamento & U. Sukhatme, Phys.
Rev. D29, 8763 (1984).
20. T. Imbo & U. Sukhatme, Phys. Rev. D28, 418
Acknowledgement — 1 would like to thank deeply Mrs. (1983); 31, 2655 (1985).
Amal Salman, my wife, for her encouragement and 21. R.Dutt, Mukherji & Y.P. Varshni, J. Phys. B19,
support. 3411 (1986).



