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ABSTRACT 

The inverted pendulum is a common-interesting control problem that involves many basic elements of control theory. This 
paper investigates the swinging up problem of a real pendulum from its lower position to the upper position and the balancing 
problem of the pendulum around the upper position. For swinging up the pendulum a fuzzy logic controller with two sets of 
rules, and two inputs is used while for stabilization a linear controller is used. 
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I. INTRODUCTION 

Inverted pendulums have been used in control laboratories 
since the 1950s. Originally their use was mainly to 
illustrate ideas in linear control such as stabilization of 
unstable systems, Schaefer and Cannon (1967), Mori et el. 
(1976), Maletinsky et al. (1981), and Meir et al. (1990). 
Because of their nonlinear nature pendulums have 
maintained their usefulness and they are now used to 
illustrate many new emerging ideas 

In this paper some properties of the simple strategies for 
swinging up the pendulum based on energy control will 
be investigated. Also stability control of the pendulum 
once in the upper position will be discussed. A real 
pendulum cart system is used. It includes the necessary 
equipment to constrain motion, apply force, measures 
states and implement control schemes. A block diagram 
of this system is shown in figure 1 

 

Figure 1 Block Diagram of the System 

 

The ideas of energy control can be generalized in many 
different ways. Spong (1995) and Chung and Hauser 
(1995) have shown that it can be used also to control the 
position of the pivot. 

II. MODELING THE PENDULUM-CART 
SYSTEM 

A parametric model for the pendulum was derived. A 
parametric model is a transfer function or state variable 
description form, from which the poles and zeros of the 
plant can be obtained. The model consists of a  number 
(pf) parameters such as coefficients of the polynomials, 
the element of the state description matrices, or the 
numbers that specify the poles and zeros. 

Moment of inertia for the pendulum 

 

Figure 2 Pendulum setup 

ascscwaw JJJJJ +++=                                    (1) 

 
Substituting the values in the above equation yields 
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J = 0.01233      [kg.m²] 

Centre of mass for the pendulum and cart 
system 

 The value of center of mass for the Pendulum ( x ) can be 
calculated as follows: 
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.                                          (2) 

Assuming that the mass of the cart is located at a point at 
the end of the pendulum stick, so the total distance 
between the center of mass of the pendulum and the point 
mass of cart is equals to ( x )  .The center of mass for the 
pendulum-cart set-up is located between the two points  as 
shown in Figure3. 
 

 
 

Figure 3: Pendulum pole 
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The center of mass for the pendulum-cart system is given 
by: 
 
L = x – A        (the center of mass for the pendulum-cart 
system) 
 
Substituting the values of constants yields a center of 
mass: 
                          L = 0.0295 m. 
 
Friction modeling 
The experimental relationship between cart friction and 
cart velocity is shown in figure 4 Ableson , C . F . ( 1996)  
 
 

 
 

Figure 4 Experimental friction plots 
 
 Where  
  
   FS   - static friction [N], 
   FC -dynamic or Coulomb friction [kg/s], 
   Xc - cart velocity - beginning of the linear           [m/s]   
dependence zone 
 
 Yc -friction value for Xc point [N]             
 DZcv  - dead zone of cart velocity [m/s]. 
 
In order to obtain some analytical results for the total 
friction force acting on the cart, the friction function is 
divided into 2 zones: 
 
 3x < -DVcv, 3x  > DVcv     (  3x  : cart velocity)                                              
Zone 1 
                                               
  -DVcv< 3x <DVcv                                                Zone 2 
 
 
zone 1: 
               The friction in this zone can be approximated by 
an exponential function Ableson , C . F . ( 1996) 
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 zone 2:  
 
The friction linearly increases in the range 
 DVcv < 3x < DVcv .From Figure 4 the value 

 of the Friction at 3x = ± DVcv is ±FS .Using a linear 
equation and noting that this linear  
 
part passes through the origin, yields: 
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cvDZ
xFS

TC 3= .                            (5)                               

 
Figure 5 shows a plot of the approximated friction 
compared with the friction curve plot.  
 

 
Cart velocity (m/s) 

 
Figure 5: Approximated friction plot (in red) compared to 

friction curve 
 
Modeling the Pendulum-Cart Set-Up 
 
Linear Controller Design 
 
The designed controller has two functions:  
 
1) To gradually swing the pendulum to the inverted 
position   
2) To balance the pendulum at the unstable equilibrium 
point. The swinging is done by a fuzzy controller or the 
position alternating controller. The stabilizing controller is 
designed by using the state feedback controller.  
 

Defining a state vector as          [ ]TxxxxX 4321= , 
the state space model will have the following form: 
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Substituting the values of the constants in the above 
matrices yields: 
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LQR – Controller 
 

 
Figure 6: pendulum & cart position responses for step input 

and K  trial # 1 
 

Friction force (N) 
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Figure 7: pendulum & cart position responses for step input 
and K of trial # 2 

  
 

 
 

Figure 8: pendulum & cart position responses for step input 
and K of trial # 3 

 
 

 
Figure 9: pendulum & cart position responses for step input 

and K of trial # 4 
 
Performance of LQR – Controller: 
 
The Evaluation Criteria are: 
 
* Closed loop poles: 
 
From the four trials, Q and R can be found. It is clear that 
by increasing Q the stability increases, this means that the 
closed – loop poles moves to the left away from the 
imaginary axis. But by increasing R the closed – loop 
poles move to the right, closer to the imaginary axis, 
which means that the controller losses some stability. By 
increasing the element Q (1, 1), the settling time 
decreases, but by increasing the  
element Q (2, 2) the settling time increases. By increasing 
R the settling time increases.  After closely inspecting all 
4 trials the results gained from trial # 1 Figure 1will be 
used as state – feedback gains in the linear controller, 
since it has the best response.                                  
  
Nonlinear Swinging up controllers 
 

 
Figure 10: Block diagram for two inputs Fuzzy controller 
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The gains g0, g1, g2 appearing in the block diagram are 
scaling gains that are used to change the width of the 

memberships function directly without the need to change 
each membership function discourse.

To balance the pendulum on the up position two 
controllers are needed: First swing-up controller brings 
the pendulum near the linear zoon, and a linear controller 
to balance the pendulum at the upward position. Different 
approaches are used for swinging up the pendulum. One 
approach of swing up controller uses energy theory 
Astrom , K . J  et al. (1995),     Iwashiro , M et al. (1996),   
Astrom , K . J .( 1999)  , another uses a sliding controller 
as a swing up controller    Furuta , K. and M. Yamakita 
(1991),    Furuta , K. and M. Yamakita et al (1992). In this 
paper fuzzy control will be used to swing up the 
pendulum.  
  
 Swinging up the inverted pendulum using 
two inputs fuzzy controller: 
 
A block diagram of this type of controller is shown in 
Figure 10; and the schematic diagram is shown in Figure 
11.  The inputs to the swing- up controller are (Θ, Θ'), 
and the output is u. 
 
  .                        

                                          
   
Figure 11:  Schematic diagram of the Fuzzy controller (two 

inputs, one output, 18 rules) 
 
Input variable Θ (measures with relative to downward 
position) has six memberships function symmetrical by 
center as shown in Figure 10 , (we used a rectangle shape 
for the psmall and nsmall since we don’t' need to know 
the accurate value of angle Θ in this  region 
 
Input variable Θ' has four membership functions, that are 
symmetrical about the center as shown in Figure 11.       
 
The output variable u shown in Figure 14 has five 
triangular membership functions that are   squeezed at the 
center to get a refine overshoot.  
  

 
Figure 12: Membership function for input Θ 

 

 
Figure 13: Membership function for input Θ' 

 

 
 

Figure 14: Membership function for output u 
 
The rules for the swing-up fuzzy controller can 
be described as follows 
  

  1- For small angle Θ  < 90° . 
 
 If angle Θ is positive (negative) and if angle                    
velocity      Θ' is positive (negative) then the       
 
 Output u is positive (negative). This strategy will   
increase the energy of the pendulum. 

 
   2- For medium angles the output u is zero.  
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   3- For big angles close to the upper position: 
 

 If the angle velocity is small, and it has the                 
same sign like the angle Θ then the energy    must   be 
increased like in case 1. 
 
 If the angle velocity is big, and it has the same sign like 
angle Θ, the output u is zero [12] 
 
 These rules are implemented as shown in table 1.0 
 
Table 1.0: Rules for Two Inputs Fuzzy System 
 

 
 

Where: 
 
 (Positive 1)                  denote positive small. 
 (Positive 2)        denote positive medium      relative to Θ 
and (positive large for Θ' and u. 
 (Positive 3)           denote positive large   relative         to 
Θ 
 (Negative 1)                denote negative small. 
 (Negative 2)      denote negative medium relative to Θ 
and (positive large for Θ' and u. 
 (Negative 3)         denote negative large   relative to Θ 
 
Simulation and Experimental Results for the 
two input fuzzy controller: 
 
Figure 15 shows the simulation results that are obtained 
using the two inputs Fuzzy controller. It can be seen from  
Figure 15-a  that the cart position and velocity  approach 
zero after the pendulum enter the linear zoon .Figure 15-b 
shows that the pendulum position at the beginning is п, 
but after the singing –up controller is enabled the position 
began to increase and decrease in a way that added energy 
to the pendulum until it reach the upward unstable 
position where the linear controller stabilized it a round 
the zero. 

    

 
(a) 

 
(b) 

Figure 15: Simulation results of the two inputs Fuzzy 
 
CONCLUSION 
 
Energy control is a very convenient way to swing up a 
pendulum. The results clearly show that the 2 input fuzzy 
controls and the linear controller worked as expected. 
These controllers were able to swing and maintain the 
pendulum at an upright position. 
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