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The energy spectra of two interacting electrons confined in a quantum dot of two and
three dimensions are calculated by using the shifted 1/D expansion method. We have shown
the dependence of the electron-electron interaction energy on the dimensionality of the quan-
tum dot. An explanation is given for the energy level crossings and transitions in the angular
momentum of the ground state of the quantum dot. Based on comparision, the shifted 1/D ex-
pansion method is an accurate and effective tool to produce and explain the spectral properties
of the quantum dot.

PACS. 03.65.Ge – Solutions of wave equations: bound states.

I. Introduction

Quantum dots (QDs), or artificial atoms, have been the subject of intense experimental
[1-5] and theoretical [6-24] research over the last few years, motivated by the physical effects and
the potential device applications, both as electronic memories as well as optoelectronic devices.
Different methods have been used to study the energy spectrum and correlation effects of interacting
electrons confined in quantum dots under the effect of an applied magnetic field. One of the most
interesting features of the electron correlation is the change of the angular momentum and spin
structure in the ground state of this QD-system. In most of these works the authors mode1 the
QD as a two-dimensional disk, since the confinement in the z-direction is assumed to be stronger
than in the xy-plane. Recently, Zhu et al. [15] have studied the effect of dimensionality on the
spectra of two electrons confined with parabolic potentials by considering two-dimensional (2D)
and three-dimensional (3D) quantum dots. They have shown, in this study, that the electron-
electron coulomb interaction energy strongly depends on the dimensionality of the QD and that
the spectra differ dramatically.

In this work we shall study the spectral properties of 2D and 3D quantum dots by using the
shifted 1/D expansion method. The results of this work are outlined in the following sections. In
section II, we present a Hamiltonian theory for two interacting electrons parabolically confined in
a QD of D-dimensions. We then proceed to produce an eigenenergy expression for any quantum
dot state jnrm >. In section III, we present our computed results and give explanations of the
energy level crossings, ordering and the dependence of the electron-electron energy, Ve¡ e, on the
confinement strength. We test our results produced by the 1/D method against exact ones. The
conclusion is given in the final section.
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II. Model

The effective-mass Hamiltonian, H(D), for two interacting electrons, parabolically confined
in a quantum dot with dimension D, is given as

H(D) =

2X

i=1

·
¡ ~2

2m¤r2
i +

1

2
m¤!2r2

i

¸
+

e2

"j~r2 ¡ ~r1j ; (1)

where ! is the confinement frequency and " is the dielectric constant of the medium. Upon
introducing the center-of-mass (cm) ~R = (~r1 + ~r2)=

p
2 and the relative coordinates ~r = (~r1 ¡

~r2)=
p

2, the Hamiltonian in Eq. (1) is decoupled into the cm motion Hamiltonian,

H
(D)
R = ¡ ~2

2m¤r2
R +

1

2
m¤!2R2; (2)

and the relative Hamiltonian,
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Eq. (2) describes the Hamiltonian of the harmonic oscillator with well known eigenenergies,

Encm ;mcm =

µ
2ncm + jmcmj+ D

2

¶
~!; (4)

labelled by the radial (ncm = 0; 1; 2; :::) and the azimuthal (mcm = 0 § 1;§ 2; :::) quantum
numbers. The total energy states of the Hamiltonian E = ER(ncm; mcm) + Er(nr;m) are
labelled by the cm and relative quantum numbers jnr; m;ncm; mcm >. The problem is reduced
to solving the relative Hamiltonian H

(D)
r . The eigenenergies of Eq. (3) are obtained by the help

of the shifted 1/D expansion method [25-26]. In D-spatial dimensions the radial Schrödinger
equation for the effective potential, V (r) = 1

4!
2r2 +

p
2
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·
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+
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+ V (r)

¸
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where ¹k = D + 2jmj ¡ a and a is the shift parameter to be determined later. Following the
previous work on the shifted 1/D expansion method [24], we give here only the energy series
expansion which is needed to calculate and understand the spectra of H(D)

r . More details on the
1/D method can be found in Refs. [24-27]. The eigenenergy expression, for the D-dimensional
QD, then reads as
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FIG. 1. The energies of the 2D quantum dot
scaled by ! against !¡

1
2 , calculated by

the 1/D expansion method. The spectral
notations a, b, c, .... are as defined in
Table I.

FIG. 2. Same as in Fig. 1, except for the energies
of the 3D quantum dot.
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a = 2 ¡ 2(2nr + 1) ¹!; (8)
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and the roots are determined through the relation,

D +2jmj ¡ 2 +2(2nr + 1)¹! = [2r3
0V

0(r0)]
1=2; (10)

®1 and ® 2 are parameters calculated in terms of nr; r0, ¹! and a, with explicit expressions given
in the Appendix.
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FIG. 3. The electron-electron interaction energies Ve¡ e in 2D (–) and 3D (- - -) quantum dots, calculated
by the 1/D method at various values of ! and for j00 > and j02 > states.

III. Results and discussion

Our numerical results are computed for QDs made of GaAs and presented in Figs. 1 to 3
and Tables I to V. In Figs. 1 an 2, we have shown the energies of the states jnr; m; ncm; mcm >
for two interacting electrons parabolically confined in the quantum dot as a function of the QD

effective length ` =
¡ ~
m¤!

¢ 1
2 » !¡ (¡ 1

2 ) for 2D and 3D, respectively. These figures coincide with
Figs. 1 and 2 of Ref. [15]. The spectra show a clear dependence on the quantum dot size `. We
observe from the figures that, as ` » ¡ (¡ 1

2
) increases, energy level crossings occur and the order of

the energy levels significantly changes. For example, the energy levels of a 2D QD, calculated at
! = 1:0, changes its order from: a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p to: a, b, d, c, h, e, i, f, g, j,
k, n, o, p, l, m at ! = 0:05. The spectral notations and energies are defined in Table I. The effect
of dimensionality on the energy level crossings in the QD spectra is also observed. Calculated
results show that the first crossing between the states c ´ j00; 01;0 > and d ´ j0;2;00;0 > in
the 2D QD occurs at !¡

1
2 = 2.2 while the same crossing occurs at !¡

1
2 = 3.7 for the 3D QD. This

finding is in agreement with Ref. [16]. The level crossing can be attributed to the dependence of
the electron-electron coulomb interaction energy, Ve¡ e, on the dimensionality of the QD. We have
shown, in Fig. 3, Ve¡ e as a function of ! for different quantum dot states and for D=2 and 3.
The coulomb interaction energy, calculated at particular confinement frequency !, is defined as
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TABLE I. The eigenenergies of 2D quantum dot calculated by the 1/D expansion method at ! =
1 and 0.05 and compared with the result of Zhu et al. [15].

! = 1.0 ! = 0.05

Quantum Dot State 1/D Zhu et al. 1/D Zhu et al.

a : j00; 000 > 3.2703 (a) 3.3196 0.2952 (a) 0.2962
b : j01; 001 > 3.7953 (b) 3.8278 0.3059 (b) 0.3062
c : j00; 010 > 4.2408 (c) 4.3196 0.3310 (d) 0.3310
d : j02; 000 > 4.6432 (d) 4.6436 0.3451 (c) 0.3462
e : j01; 011 > 4.7953 (e) 4.8278 0.3643 (h) 0.3476
f : j10; 000 > 4.9292 (f) 5.1472 0.3559 (e) 0.3562
g : j00; 100 > 5.2703 (g) 5.3196 0.3810 (i) 0.3810
h : j03; 001 > 5.5136 (h) 5.5174 0.3717 (f) 0.3854
i : j02; 010 > 5.6432 (i) 5.6438 0.3951 (g) 0.3962
j : j11; 001 > 5.6769 (j) 5.7538 0.3919 (s) 0.3968
k : j01; 101 > 5.7953 (k) 5.8278 0.4059 (k) 0.4062
l : j10; 010 > 5.9294 (l) 6.1472 0.4061 (n) 0.4066
m : j00; 110 > 6.2703 (m) 6.3196 0.4210 (o) 0.4240
n : j04; 000 > 6.4782 (n) 6.4693 0.4310 (p) 0.4310
o : j12; 000 > 6.5844 (o) 6.5956 0.4217 (l) 0.4354
p : j02; 100 > 6.6432 (p) 6.6436 0.4451 (m) 0.4462

the difference between the energies of the QD with and without (! = 0) confinement. It is clear
from figure 3, that Ve¡ e decreases as the dimensionality of the QD increases. For example, the
coulomb interaction energy at ! = 0.05 and for the j00 > relative state is calculated to be 0.1951
R¤ and 0.1732 R¤ for 2D and 3D QDs, respectively. The coulomb energies for the relative QD-
states: j00 >, j01 > and j02 >, calculated at various confinement strengths, are also listed in
Table II for comparison purposes. Due to the reduction in the electron-electron interaction energy
for the 3D QD, comparable to the 2D QD, the-crossing between the c and d states in the 3D
QD occurs at large !¡

1
2 ¼ 3.7. The spectral properties of the QD can be understood from the

numerical results listed in Table III and analytical expressions given in Eqs. 6 through 10. In
Table III, we have listed the calculated roots r0 of the 2D and 3D quantum dots for relative states
j00 > and j03 > for various values of confinement frequency !. The results clearly show that
the roots, for fixed ! and particular state, increase as the dimensionality increases from 2 to 3.
The dependence of the roots r0 on the dimensionality D can be also seen from the relation given
by Eq. 10. The calculations show that the major contribution (» 50%) to the total relative energy
Enr ;m is coming from the first energy term Eq. (7), namely,
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TABLE II. The electron-electron interaction energy Ve¡ e in 2D and 3D quantum dot states cal-
culated at different values of !.

2D 3D

! j00 > j01 > j02 > j00 > j01 > j02 >

0.05 0.1951 0.1559 1.1310 1.1732 0.1421 0.1219

0.1 0.3048 0.2327 0.1913 0.2634 0.2094 0.1770

0.2 0.4732 0.3440 0.2774 0.3969 0.3059 0.2553

0.3 0.6100 0.4306 0.3438 0.5022 0.3806 0.3155

0.4 0.7290 0.5040 0.3998 0.5921 0.4437 0.3663

0.5 0.8361 0.5690 0.4492 0.672 0.4993 0.4111

0.6 0.9345 0.6278 0.4939 0.7447 0.5498 0.4517

1.0 1.2715 0.8251 0.6433 0.9896 0.7184 0.5871

TABLE III. The roots r0 of 2D and 3D quantum dot-states calculated at various values of !.

j00 > j01 > j02 >

! 2D 3D 2D 3D 2D 3D

0.05 11.5694 11.9466 12.3915 12.8884 13.4198 13.9710

0.3 3.7978 4.0514 4.3342 4.6286 4.9236 5.2135

0.5 2.7882 3.0100 3.6841 3.4970 3.7390 3.9739

1.0 1.8463 2.0280 2.2186 2.4069 2.5882 2.7629

10 0.4999 0.5803 0.6553 0.7245 0.7885 0.8482

30 0.2766 0.3271 0.3726 0.4139 0.4517 0.4867

50 0.2112 0.2515 0.2873 0.3195 0.3490 0.3763

70 0.1770 0.2117 0.2422 0.2697 0.2947 0.3178
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TABLE IV. The scaled ground state j00 > energyE00=! calculated by the 1/D expansion method
at various values of ! for 2D and 3D quantum dots. The exact values of the hannonic
oscillator Hamiltonians in 2D and 3D are indicated by stars.

! 2D 3D

0.05 4.9020 4.9640
0.1 4.0480 4.1340
0.2 3.3660 3.4845
0.3 3.0333 3.1733
0.4 2.8225 2.9802
0.5 2.6722 2.8440
0.6 2.5575 2.7412
1.0 2.2715 2.4896
10 1.4744 1.8385
30 1.2859 1.6896
50 1.2246 1.6549
70 1.1914 1.6313

1.0000¤ 1.5000¤

E(0)
nr ;m =

1

4
!2r2

0 +

p
2

r0
; (7)

which is just the sum of the parabolic confinement energy 1
4!

2r2 and the repulsive coulomb
interaction energy

p
2=r0. Now, as D increases the roots r0 also increase and thus the interaction

energy Ve¡ e =
p

2=r0 decreases. This analytic dependence relation of Ve¡ e on D supports
our numerical results and it agrees with the result of Bryant [17], reported in his significant
work. On the other hand the confinement energy, 1

4!
2r2

0, enhances as D increases. This energy
competition between coulomb and confinement terms leads to energy level crossings and transitions
in the angular momentum of the ground state of the QD. To see more obviously the influence
of dimensionality on the QD spectra, we have separately listed in Table IV, the ground state
eigenenergies j00 > of the relative Hamiltonian as a function of ! for the 2D and 3D QD. The
table shows that the energies enhance as the dimensionality D increases. In addition to this, in
the strong confinement regime (! !1), the energy values approaches the exact energies: E=!
= 1 and 1.5, of the harmonic oscillator in 2D and 3D, respectively.

To test the accuracy of the 1/D expansion method, we compared, in Table I, the energies of
the 2D quantum dot states calculated by the 1/D method at various values of ! against the results
calculated by a series expansion method [15]. The comparison clearly show that our results are in
very good agreement with the results obtained by Zhu et al. [15] using a power series method. In
addition to this agreement, the computed eigenenergies of the relative QD states, listed in Table V,
recover the exact results of the harmonic oscillator energies as the confinement strength strongly
increases: ! !1; !¡

1
2 ! 0, as we mentioned earlier.
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TABLE V. The scaled energies of the states j00; 00 > and j02; 10 > calculated by the 1/D
expansion method at various values of ! for 2D and 3D quantum dots. The exact
values of the harmonic oscillator Hamiltonians in 2D and 3D are indicated by stars.

j00; 00 > j02;10 >

! !¡
1
2 2D 3D 2D 3D

0.05 4.4721 5.9020 6.4640 8.6200 9.4380

0.30 1.8257 4.0333 4.6740 7.1460 8.0516

0.50 1.4142 3.6722 4.3340 6.8984 7.8222

1.00 1.000 3.2715 3.9896 6.6433 7.5871

10.00 0.3162 2.4744 3.3385 6.2079 7.1887

30.00 0.1826 2.2859 3.1989 6.1205 7.1093

70.00 0.1195 2.1914 3.1313 6.0791 7.0717

2.0000¤ 3.0000¤ 6.0000¤ 7.0000¤

IV. Conclusion

In conclusion, we have studied the spectral properties of QDs for 2D and 3D using the
shifted 1/D expansion method. We have shown the dependence of the electron-electron interaction
energy on the dimensionality of the QD. An explanation is given for the energy level crossings
and transitions in the angular momentum of the ground state of the QD. Based on comparisons,
the shifted 1/D expansion method is an accurate and effective tool which produce and explain the
spectral properties of the QD.

Appendix

The parameters ®1 and ® 2, appearing in equation (13) are given as follows.

®1 =
£
(1 +2nr)e2 +3(1 +2nr + 2n2

r)e4

¤
$¡ 1

¡ £e21 +6(1 +2nr)e1e3 + (11 + 30nr +30n2
r)e

2
3

¤
;

(A1)
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®2 =(1 +2nr)d2 + 3(1 + 2nr +2n2
r)d4 +5(3 +8nr + 6n2

r + 4n3
r)d6¡ $

¡ 1[(1 + 2nr)e2
2

+12(1 +2nr + 2n2
r)e

2e4 + 2e1d1 + 2(21 +59nr +51n2
r + 34n3

r)e
2
4 + 6(1 + 2nr)e1d3

+30(1 +2nr + 2n2
r)e1d5 + 6(1 + 2nr)e3d1 +2(11 +30nr + 30n2

r)e3d3

+10(13 +40nr + 42n2
r + 28n3

r)e3d5] + $¡ 2)[4e2
1e2 +36(1 +2nr)e1e2e3

+8(11 +30nr +30n2
r)e2e3 +24(1 + nr)e12e4 +8(31 + 78nr + 78n2

r)e1e3e4

+12(57 +189nr + 225n2
r +150n3

r)e
2
3e4] ¡ $¡ 3[8e3

1e3 + 108(1 +2nr)e2
1e

2
3

+48(11 +30nr + 30n2
r)e1e3

3 + 30(31 +109nr + 141n2
r +94n3

r)e
4
3];

(A2)

with

ej = "j=$
j=2; and di = ±i=$

j=2; (A3)

where j = 1, 2, 3, 4; i = 1, 2, 3, 4, 5, 6.

The definitions of the "j and ±i quantities are

"1 = (2 ¡ a); "2 = ¡ 3(2 ¡ a)=2; (A4)

"3 = ¡ 1 + r5
0V

(3)(r0)=6Q; "4 = 5=4 + r6
0V

(4)(r0)=24Q; (A5)

±1 = ¡ (1 ¡ a)(3 ¡ a)=2; ±2 = 3(1 ¡ a)(3 ¡ a)=4; (A6)

±3 = 2(2 ¡ a); ±4 = ¡ 5(2 ¡ a)=2; (A7)

±5 = ¡ 3=2 + r7
0V

(5)(r0)=120Q; ±6 = 7=4 + r8
0V

(6)(r0)=720Q; (A8)
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