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The energy spectra of two interacting electrons confined in a quantum dot of two and
three dimensions are calculated by using the shifted 1/D expansion method. We have shown
the dependence of the electron-electron interaction energy on the dimensionality of the quan-
tum dot. An explanation is given for the energy leved crossings and transitions in the angular
momentum of the ground state of the quantum dot. Based on comparision, the shifted 1/D ex-
pansion method is an accurate and effective tool to produce and explain the spectral properties
of the quantum dot.

PACS. 03.65.Ge — Solutions of wave equations: bound states.

I. Introduction

Quantum dots (QDs), or artificid aoms have been the subject of intense experimentd
[1-5] and theoretica [6-24] research over thelagt few years, motivated by the physcd effects and
the potentid device gpplications, both as dectronic memories as well as optodectronic devices
Different methods have been used to study the energy spectrum and correation effects of interacting
eectrons confined in quantum dots under the effect of an applied magnetic field. One of the most
interesting features of the dectron corrdation is the change of the angular momentum and sin
gructure in the ground state of this QD-sysem. In mog of these works the authors model the
QD as atwo-dimensional disk, snce the confinement in the z-direction is assumed to be stronger
than in the xy-plane. Recently, Zhu ef al. [15] have gudied the effect of dimensiondity on the
gpectra of two electrons confined with parabolic potentids by considering two-dimensiond (2D)
and three-dimensiond (3D) quantum dots They have shown, in this study, tha the dectron-
eectron coulomb interaction energy strongly depends on the dimensionality of the QD and that
the spectra differ dramatically.

In this work we shdl sudy the spectral properties of 2D and 3D quantum dots by using the
shifted 1/D expansion method. Thereaults of thiswork are outlined in the following sections. In
section II, we present a Hamiltonian theory for two interacting dectrons parabolicaly confined in
a QD of D-dimensions. We then proceed to produce an eigenenergy expression for any quantum
dot gate [n,m >. In section I1l, we present our computed results and give explanations of the
energy levd crossings, ordering and the dependence of the eectron-dectron energy, V._., on the
confinement strength. We test our results produced by the /D method against exact ones. The
conclusion is given in the find section.
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II. Model

The effective-mass Hamiltonian, H(®), for two interacting electrons, parabolically confined
in a quantum dot with dimenson D, isgiven as

(D) : n’ 2 1 2 2 e’
HY = E — L+ —mFwr; P— 1
=1 2m*vl+2 W +€|F2—F1|7 ( )

where w is the confinement frequency and ¢ is the dielectric constant of the medium.  Upon
introducing the center-of-mass (cm) R = (7 + ) /+/2 and the relaive coordinates 7 = (7} —
7)/+/2, the Hamiltonian in Eq. (1) is decoupled into the cm motion Hamiltonian,

(D) 12 1

Hp' = —5 Vi + 5m'w’R?, @)

and the rdative Hamiltonian,

[ S S o
Vr+§mwr —I—ﬁr. 3
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HP = _

EQ. (2) decribes the Hamiltonian of the harmonic oscillator with well known e genenergies,

D
E'n'cm Mem — (anm + ‘mcm‘ + 5) hw? (4)

lebdled by the radid (nem = 0,1,2,..) and the azimuthd (me,, = 04+ 1,£2,...) quantum
numbers  The totd energy dates of the Hamiltonian E = Egr(nan, Mem) + Er(ny,m) ae
labeled by the cm and rative quantum numbers | n,., m; n,, mqy, >. The problem is reduced

to solving the relative Hamiltonian HﬁD). The eigenenergies of Eq. (3) are obtained by the hep
of the shifted 1/D expanson method [25-26]. In D-spatial dimensions the radid Schrodinger

equation for the effective potential, V() = 1w?r2 + 2 becomes

d? (k+a—-1)(k+a-3)

_W + Ar2 + V(T) 111(7’) = En,m(r)7 (5)

where & = D + 2|m| — a and a is the shift parameter to be determined later. Following the
previous work on the shifted /D expansion method [24], we give here only the energy series
expansion which is needed to calculate and understand the spectra of g More details on the

1/D method can be found in Refs [24-27]. The eigenenergy expresson, for the D-dimensond
QD, then reads as

2 1 (1—a)(3—a) a
Epm=E0 2 LZOOTD Qa2 6
Nr,m nm T 4rg + T(Q) 4 +ai| + k(%, (6)
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FIG. 1. The energies of the 2D quantum dot FIG. 2. Sameasin Fig. 1, except for the energies
scaled by w against w—2, calculated by of the 3D quantum dot.
the 1/D expansion method. T he spectral
notations a, b, c, .... are as defined in
Table 1.
1 V2
0 2.2
= Pl (7
a=2-22n,+1) @, (8
" 1/2
V_(ro)
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and the roots are determined through the re aion,
D +2/m| — 2 +2(2n, + D)@ = [2r3V" (r0)] /2, (10)

a1 and oy ae parameters calculated in terms of n,, 7o, @ and a with explicit expressons given
in the Appendix.



318 THE EFFECTS OF DIMENSONALITY ON THE - - - VOL. 40

— 2D QD

——— 3D @D

104

Enrm/g)

05

FIG. 3. The dectron-electron interaction energies V,_. in 2D (-) and 3D (- - -) quantum dots, cdculated
by the /D method at various values of w and for |00 > and |02 > states.

II1. Results and discussion

Our numerica results are computed for QDs made of GaAs and presented in Figs. 1 to 3
and Tables| to V. In Figs. 1 an 2, we have shown the energies of the states |n,., m; Ny, Mo >
for two interacting electrons parabolically confined in the quantum dot as a function of the QD

effective length £ = (2 )2 ~ w=(=2) for 2D and 3D, respectively. These figures coincide with
Figs. 1 and 2 of Ref. [15] The spectra show a clear dependence on the quantum dot Sze /. We
observe from the figures that, as ¢ ~~(=32) increases, energy leve crossings occur and the order of
the energy levels significantly changes For example, the energy levels of a 2D QD, caculated a
w = 1.0, changesits order from: a b, c, d, e f, g, h,i,j, k |, m;n, 0, pto: a b,d,c, heli,f,gj,
k,n, o, p |, ma w=0.05. The gectral notations and energies ae defined in Table I. The effect
of dimensionality on the energy level crossngs in the QD spectra is dso observed. Cdculated
results show that the firg crossng between the states ¢ = |00; 01,0 > and d = |0,2;00,0 > in
the 2D QD occurs a W =22 while the same crossing occurs at w2 =3.7for the 3D QD. This
finding is in agreement with Ref. [16]. The level crossing can be attributed to the dependence of
the dectron-eectron coulomb interaction energy, V. _., on the dimensiondity of the QD. We have
shown, in Fig. 3, V._. as a function of w for different quantum dot states and for D=2 and 3.
The coulomb interaction energy, calculated & particular confinement frequency w, is defined as
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TABLE |. The eigenenergies of 2D quantum dot caculaed by the 1/D expansion method at w =
1 and 0.05 and compared with the result of Zhu ef al. [15].

w =10 w = 005

Quantum Dot State 1D Zhu et al. 1/D Zhu et al.
a : |00; 000 > 3.2703 (a) 3.319%6 0.2952 (a) 0.2962
b: |01;001 > 3.7953 (b) 3.8278 0.3059 (b) 0.3062
¢ |00; 010 > 4.2408 (c) 4.319% 0.3310 (d) 0.3310
d : 102; 000 > 46432 (d) 46436 0.3451 (c) 0.3462
e: |01;011 > 4.7953 (e) 4.8278 0.3643 (h) 0.3476
f:[10; 000 > 49292 (f) 5.1472 0.3559 (e) 0.3562
g : 100; 100 > 5.2703 (9) 5.319% 0.3810 (i) 0.3810
h:|03;001 > 55136 (h) 55174 0.3717 (f) 0.384
i:02;010 > 5.6432 (i) 5.6438 0.3951 (9) 0.3962
j:|11;001 > 5.6769 () 5.7538 0.3919 (s) 0.3968
k:|01;101 > 5.7953 (k) 5.8278 0.4059 (k) 0.4062
[:]10; 010 > 5.9294 () 6.1472 0.4061 (n) 0.4066
m: |00; 110 > 6.2703 (m) 6.3196 0.4210 (0) 0.4240
n: [04; 000 > 6.4782 (n) 6.4693 0.4310 (p) 0.4310
o: [12;000 > 6.5844 (0) 6.5956 0.4217 () 0.434
p: |02;100 > 6.6432 (p) 6.6436 0.4451 (m) 0.4462

the difference between the energies of the QD with and without (w = 0) confinement. It is clear
from figure 3, that V._. decreases as the dimensionality of the QD increases. For example, the
coulomb interaction energy & w = 0.05 and for the |00 > reldive stateis calcul aed to be 0.1951
R« and 0.1732 R* for 2D and 3D QDs respectively. The coulomb energies for the rdative QD-
dates: |00 >, |01 > and |02 >, calculated at various confinement strengths, are also lised in
Table Il for comparison purposes. Due to the reduction in the electron-dectron interaction energy
for the 3D QD, comparable to the 2D QD, the-crossing between the ¢ and d states in the 3D
QD occurs at large w2 ~ 3.7. The spectrd properties of the QD can be understood from the
numerica results listed in Table 111 and analytica expressions given in Egs. 6 through 10. In
Table 111, we have liged the cdculaed roots ry of the 2D and 3D quantum dots for relative states
|00 > and |03 > for various vaues of confinement frequency w. The results dearly show that
the roots, for fixed w and particular state, incresse as the dimengondity increases from 2 to 3.
The dependence of the roots o on the dimensionality D can be also seen from the relaion given
by Eg. 10. The cdculations show that the mgor contribution (~ 50%) to the totd reative energy
E,, m is coming from the fird energy term Eq. (7), namely,
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TABLE Il. The dectron-dectron interaction energy V. in 2D and 3D quantum dot states cd-
culated a different values of w.

2D 3D
w |00 > |01 > |02 > |00 > |01 > |02 >
0.05 0.1951 0.1559 1.1310 1.1732 0.1421 0.1219
0.1 0.3048 0.2327 0.1913 0.2634 0.2094 0.1770
0.2 0.4732 0.3440 0.2774 0.3969 0.3059 0.2553
0.3 0.6100 0.4306 0.3438 0.5022 0.3806 0.3155
0.4 0.7290 0.5040 0.3998 0.5921 0.4437 0.3663
05 0.8361 0.5690 0.4492 0.672 0.4993 0.4111
0.6 0.9345 0.6278 0.4939 0.7447 0.5498 0.4517
10 12715 0.8251 0.6433 0.9896 0.7184 0.5871

TABLE Ill. Theroots ry of 2D and 3D quantum dot-states calculated & various values of w.

100 > 01 > 102 >

w 2D 3D 2D 3D 2D 3D

0.05 11.56%4 11.9466 12.3915 12.8334 13.4198 13.9710
0.3 3.7978 4.0514 4.3342 4.6286 4.9236 52135
05 2.7882 3.0100 3.6841 3.4970 3.7390 3.9739
1.0 1.8463 2.0280 2.2186 2.4069 25882 2.7629
10 0.4999 0.5803 0.6553 0.7245 0.7885 0.8482
30 0.2766 03271 0.3726 0.4139 0.4517 0.4867
50 0.2112 0.2515 0.2873 0.3195 0.3490 0.3763
70 0.1770 0.2117 0.2422 0.2697 0.2947 03178
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TABLE IV. Thescaled ground state |00 > energy Eqo/w calculated by the /D expansion method
a variousvalues of w for 2D and 3D quantum dots The exact values of the hannonic
oxcillaor Hamiltonians in 2D and 3D are indicated by gars

w 2D 3D
0.05 4.9020 4.9640
01 4.0480 4.1340
0.2 3.3660 3.4845
03 3.0333 3.1733
04 2.8225 2.9802
05 2.6722 2.8440
0.6 2.5575 27412
10 2.2715 2.4896
10 1.4744 1.8385
30 1.2859 1.6896
50 1.2246 1.6549
70 1.1914 1.6313
1.0000* 1.5000"
B0, = i 2, ™

which is just the sum of the parabolic confinement energy +w?r? and the repulsive coulomb

interaction energy /2/ro. Now, as D increases the roots o aso increase and thus the interaction
energy V.. = /2/ro decreases This analytic dependence rdation of V. . on D supports
our numericad results and it agrees with the result of Bryant [17], reported in his S gnificant
work. On the other hand the confinement energy, +w?r3, enhances as D incresses. This energy
competition between coulomb and confinement terms leads to energy level crossings and transitions
in the angular momentum of the ground state of the QD. To see more obviously the influence
of dimensionality on the QD spectra, we have separately listed in Table 1V, the ground date
eigenenergies |00 > of the rdative Hamiltonian as a function of w for the 2D and 3D QD. The
table shows that the energies enhance as the dimensionality D increases. In addition to this in
the strong confinement regime (w — oo), the energy vaues approaches the exact energies. E/w
=1 and 1.5, of the harmonic oscillator in 2D and 3D, respectively.

To teg the accuracy of the 1/D expansion method, we compared, in Table I, the energies of
the 2D quantum dot gates caculaed by the /D method a various values of w against the results
cdculated by a series expansion method [ 15]. The comparison clearly show tha our results are in
very good agreement with the results obtained by Zhu et al. [15] usng a power series method. In
addition to this agreement, the computed e genenergies of therdative QD states, liged in Table V,
recover the exact reaults of the harmonic oscillator energies as the confinement srength strongly

. 1 . .
increases w — oo w2 — 0, as we mentioned earlier.
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TABLE V. The scaded energies of the states |00; 00 > and [02; 10 > cdculated by the 1/D
expanson method at various vaues of w for 2D and 3D quantum dots. The exact
values of the harmonic oscillator Hamiltonians in 2D and 3D are indicated by stars.

100; 00 > 102;10 >
w w2 2D 3D 2D 3D

0.05 4.4721 5.9020 6.4640 8.6200 9.4380
0.30 1.8257 40333 4.6740 7.1460 8.0516
0.50 1.4142 36722 4.3340 6.8984 7.8222
1.00 1.000 32715 3.9896 6.6433 7.5871
10.00 0.3162 2 4744 3.3385 6.2079 7.1887
30.00 0.1826 2.2859 3.1989 6.1205 7.1093
70.00 0.1195 21914 3.1313 6.0791 7.0717

2.0000* 3.0000* 6.0000* 7.0000*

IV. Conclusion

In conclusion, we have sudied the spectrd properties of QDs for 2D and 3D using the
shifted 1/D expansion method. We have shown the dependence of the eectron-eectron i nteraction
energy on the dimensiondity of the QD. An explanation is given for the energy level crossngs
and trangtions in the angular momentum of the ground stete of the QD. Based on comparisons,
the shifted 1/D expansion method is an accurate and effective tool which produce and explain the
pectral properties of the QD.

Appendix
The parameters a; and aa, gopearing in equation (13) are given as follows
oy = [(L +2n,)eg +3(1 +2n, + 272%)64] w1

(A1)
— (] +6(1 +2n,)eres + (11 + 30m, +30n7)e3] ,
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az = (1 +2n,)ds + 3(1 + 2ny +2n2)ds 4+ 5(3 + 8n, + 6n2 + 4nd)dg- w1 [(1 + 2n,)e3
+12(1 + 2n, + 2n2)e?et + 2e1dy + 2(21 + 590, +51n2 + 34nd)e? + 6(1 + 2n,)e1ds

+30(1 + 2n, + 2n2)eids + 6(1 + 2n,)esd; +2(11 + 30n,. + 30n2)esds
+10(13 + 40n, 4 42n2 + 28n3)esds] + w2 [4ees + 36(1 + 21, )erezes

+8(11 + 30n, +30n2)ezes +24(1 + n,.)ei2e4 + 8(31 + 78n,. + 78n2)e ezey

+12(57 + 189n, + 22512 + 150n3)e3es] — w3[8efes + 108(1 + 2n,)e?e3
+48(11 + 30n, + 30n2)e1e3 + 30(31 + 109n, + 141n2 + 94n3)ed],

with
ej =¢j/w/?, and d;=5;/w"?,
where j=1,2 3, 4,:1=1,2,3, 4,5,6.
The definitions of the ¢; and ¢, quantities are

e1=(2—-a), e&=-32-0a)/2

e5=—1+1VO(r)/6Q, e4=>5/4+715VP(ry)/24Q,

i =—(1—-a)3—a)/2, & =3(1-a)@3—a)/4

& =202—a), 61=-5(2—-a)/2,

8 = —3/24 rgVO)(r)/120Q, 0 = 7/4+ r§V O (rg) /7200,
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