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Abstract

The positive semidefinite (PSD) completion problem is concerned with determining the set
of PSD completions of a partial matrix. Previous work has focused on determining whether
or not a given partial PSD matrix has a PSD completion, by examining characteristics of the
graph of the matrix. Our aim is to move beyond the existence question to that of describing
the set of all PSD completions of a given partial matrix. To this end, we consider the most
fundamental nontrivial instance of the problem. l4gt, y) be a real PSD matrix of order 4
whose graph i€'4, a 4-cycle, withx andy the two unspecified entries corresponding to the two
missing edges of 4. We investigate the problem of giving a precise description of the convex
regionRinside the squarge| < 1, |y| < 1 forwhichA(x, y) is PSD. The boundary cungg?
is determined by the quartic polynomial equationAfat y) = 0; an important feature of our
description is the set of singular points 8R. We find necessary and sufficient conditions
on the specified entries of(x, y) so that defd(x, y) factors with 1, 2, 3 or 4 singular points
on OR corresponding to the points of intersection of the curves of all factors of dety).

We then find necessary and sufficient conditions on the specified entrié6cof) so that

A(x, y) has rank 2 PSD completions. We show that this can occur in three ways: either there
is a unique PSD completiofiR(s a single point), or det(x, y) factors (with the occurrence

of singular points), or the PSD completion regReontains a unique rank 2 PSD completion
which is a singular point, bR is not a single point. We also show that the results mentioned
above can be generalized for any partial PSD matrix of otder4 whose graph is missing

two nonadjacent edges. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

A real partial matrixis one in which some entries are specified real numbers and
the remainder are unspecified, i.e., free variables over the real numbers. An example
is

2 3 7
3 6 -4, (1)
? -4 3

in which the ?'s indicate unspecified entries. We say that a matiscpartial sym-
metricif A is squareq; is specified wheneves; is, andaj; = g;;. We shall assume
throughout that the diagonal entriesAfare specified.

Notation. In this paper, we will write PD (PSD) to mean positive definite (positive
semidefinite), respectively. We will also write" to mean the Moore—Penrose gen-
eralized inverse of the matri.

By a partial PD (PSD) matrix we mean a real partial symmetric matrix each of
whose specified principal submatrices is PD (PSD). The matrix given by (1) is partial
PD.

A PD completionof a partial PD matrix is a real PD matrix resulting from a
specification of the unspecified entries. For example,

2 3 -2
3 6 -4
—2 -4 3

is a PD completion of the matrix in (1). A PSidmpletionis defined similarly.

Much is known about the existence of PD (PSD) completions and we summarize
the essential results here. We first discuss the case in which there is just one (two
symmetrically placed) unspecified entry in a partial PD (PSD) matriBecause
the problem of existence is unchanged under permutation similarity, we may assume
that the missing entry lies in the upper right (and lower left) corner. Then

a b' x
A=|b B ¢, (2)
x ' d

wherex is the unspecified entry. We have from [5, p. 175]:

Proposition 1. If A given by(2) is partial PD, thenA has PD completions. The set
of all such completions is the interval given by the inequality

;
x —bT B L < det[z lﬂ -det[f} 2} /(detB)2. (3)

The endpoints of this interval give PSD completiond of
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Fig. 1. A graph on three vertices.

If Ais partial PSD, we have a similar result [7, p. 18]:

Proposition 2. If A given by(2) is partial PSD thenA has PSD completions. The
set of all such completions is the interval given by the inequality

lx —b"BTe)2 < (a—b"BTb)(d — c"BYe). (4)

The question of existence of a PSD completion in the case there is more than one
unspecified entry in a partial PSD matrix depends on its graph.

Definition 1. Let A be a partial symmetrio-by-n matrix. The undirected graph
G = (N, E) of A has vertex selV = {1, 2,...,n} and edge seE such thatij
E, i # j,ifandonlyifa;;, i, j =1,...,n, is specified.

For example, the graph of the matrix in (1) is shown in Fig. 1.
Definition 2. A graph G ischordalif it has no minimal cycle of four or more edges.

Previously, considerable work has been done on the existence aspect of the PD
(PSD) completion problem; i.e., given a partial PD (PSD) matrix, is there a PD (PSD)
completion? The first major graph theoretic result about PD (PSD) completions
states that ifA is a partial PD (PSD) matrix whose graph is chordal, thdmas a PD
(PSD) completion [4]. It is also shown that for nonchordal graphs one must impose
additional conditions or. The simplest nonchordal graphs are theyclesn > 4.
Necessary and sufficient conditions for the existence of a PD (PSD) completion for
a partial PD (PSD) matrix whose graph israoycle are given in [2]. Conditions for
a completion for a class of graphs significantly generalizing the chordal graphs and
including then-cycles are given in [1].

The set of all PD (PSD) completions of a given partial PD (PSD) matrix is, in
general, not well understood. In fact, it has only been investigated for a very restrict-
ed class of partial PD (PSD) matrices. Our main aim in this paper is to describe
the set of PSD completions of the class of real partial PSD matrices with only two
unspecified entries and whose graph is missing two nonadjacent edges. As it will be
shown, even in this case, there are myriad possibilities.

2. Theproblem for two unspecified entries

The simplest example of a partial PSD matrix with two unspecified entries is the
3-by-3 matrix
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1 a x
A=fa 1 y|, la<1] (5)
x y 1

wherex andy are the unspecified entries. We have normalized the diagonal entries
to be one as we will do throughout. Because the set of PSD matrices of a given
size is a convex set, we know a priori that the completion redtoa {(x, y) €

R?| Ais PSD is a closed convex subset of the squiiee {(x, y) € R?||x| < 1, |y]

< 1}. Since all proper principal minors of are nonnegative if, y € S, A is PSD if

and only if

detA = 1+ 2axy —a? — x? — y? (6)
is nonnegative. We first consider the case +1. If a = 1, then
1 1 x
1 1 vy
x y 1

is PSD if and only ify = x; hence, the regioR s the diagonal of the squaBgiven
byy=ux.1fa=-1, then

1 -1 «x
-1 1 vy
X y 1

is PSD if and only ify = —x; hence, the regioR is the diagonal of the squaf
given byy = —x. We now summarize this case for future reference.

Observation 1. Letx,y €[—1,1]. Then

[1 1 «x
1 1 vy
x y 1
is PSD if and only ify = x, and
1 -1 «x
-1 1 vy
| X y 1

is PSD if and only ify = —x.

We now consider the cage| < 1. Then the boundary dR is determined by
1+ 2axy — a® — x? — y? = 0. This equation, which appears in [2, pp. 25-27], de-
scribes an ellipse whose axes lie along the lines +x and which is tangent to the
sides of the squar& For example, it = % the graph is shown in Fig. 2. (This and
subsequent graphs in Figs. 4 and 5 are generated by a MAPLE program.)

Since de#d > 0 at (0, 0), detA > 0 in the interior and on the boundary of the
ellipse. Thus, the s® is completely understood far= 3.
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Fig. 2. PSD completion region far = 3.

Forn = 4, there are two possible configurations with two unspecified entries,

1 a d =x
a 1 b vy
d b 1 ¢ (7
x y ¢ 1
and
1 a x d
1 b
Ay =10 1 T ®
d y ¢ 1

whose graphs are shown in Fig. 3(a) and (b), respectively. The edges have been
labeled by the corresponding matrix entries.

We always assume| < 1, |b] <1, |c|] < 1, |d] < 1. As the graphs in Fig. 3(a)
and (b) are the only graphs on four vertices with four edges, any other 4-by-4 matrix
with two unspecified entries is permutation similar to either (7) or (8). Likewise, if
n > 4, there are just two graphs with two missing edges (depending on whether or
not the missing edges are adjacent).

In[7, Section 2.2] it is shown that for any partial PSD matrix of onder 4 whose
graph is missing two adjacent edges, the possible completion regions are either a
single point, a line segment, or an ellipse. The matrix in (7) is a special case.

The graph in Fig. 3(b), a 4-cycle, is the simplest nonchordal graph. Our aim in
this paper is to give a fairly complete description of the PSD completion region,

(x y) € R2| A(x, y) is PSD}

a
O—® a b
O—

(b)

Fig. 3. Nonisomorphic graphs on four vertices with two unspecified entries.
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We first show that the PSD completion problem for any partial PSD matrix whose
graph is missing two nonadjacent edges can be reduced to the case of a 4-cycle.

3. Reduction to a 4-cycle
We need the following lemma from [6, p. 93].

Lemmal. If

B C
cl A
is PSD then%i(C) € R(B) andR(CT) C R(A).

We note that Observation 1 is a special case of this lemma.

Let G be a graph om vertices obtained fronk,, by deleting two nonadjacent
edges. Letl, 2, ..., n} be the vertex set d& and let{n — 3,n — 1} and{n — 2, n}
be the two deleted edges.

Let

B C
H(x, )’) = |:CT A(X,y)i|

be a partial PSD matrix with graph, whereA(x, y), as before, is given by (8). We
allow the possibility thaB is singular. By Lemma 1¢ = BE for some(n — 4)-by-4
matrix E. Multiplying H (x, y) on the right by

I —-B'C
0 I
and on left by its transpose, we see tliaty, y) is PSD if and only if the Schur
complement
S(x,y) = A(x,y) — CTB'C,

of Bin H(x, y), is PSD. So, we analyze the PSD completion regionSfor, y),
which we express as

d1 ai X — X0 aa

| a dp az y—o
50, y) = X — Xxo as ds as
ag y—Yo as da

If S(x, y) is not partial PSD, then the completion region is empty. If dnis 0, we
have the completion problem for a 3-by-3 matrix with one unspecified entry, which
we covered in Section 1. So assumedalare positive. MultiplyS(x, y) on the left

and right by dlagm, NN Jd—4) to give the normalized
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r 1 al X—X0 as ]
Jdids Jdids Jdida
ay 1 ap y—Yo
_ Vdida Jdadz  /dady
Sx,y) =
X—XQ az 1 asz
Jdids  Jdadz Jdzda
as y—Yo as 1
Ldids  Jdads — /d3dy ;
Letting
ay az as
a= , b= , €= ,
Jdido dods dada
g , _X—=XxX0 ., Y=o
Jdids' Jdidz’ Jddy'

137

we find the PSD completion region inside the squairex’, y’ coordinates as in the
casen = 4. Then, by scaling and translation, we find the PSD completion region in
terms of the givenr, y coordinates inside the squafteg — +/d1d3, xo + +/d1d3] x

[yo — V/d2da, yo + ~/d2ds]. Hence, the reduction to the 4-cycle is done.

4. Elementary cases of PSD completion region for the 4-cycle

Let A(x, y) be a partial PSD matrix as given in (8).

Case |. We determine conditions ofa, b, ¢, d) so that the PSD completion region

Ris a single point.

In order to do so, we consider the 3-by-3 principal submatriced @f y) in

whichx appears:

1 a x 1 x d
A, L, 2,3]=|a 1 b|, A L3 H]l=|x 1 c
x b 1 d ¢ 1

If (x,y) is a point inR, these two matrices are PSD. By Proposition 2, we have
|x —abl? < (1—a®)(1—b? andjx — cd|? < (1 — c?) (1 — d?). Equivalentlyxlies

in the intersection of the intervals
= [ab VA=A =12, ab+ V(1 —a?)(1— bz)]
and

I = [cd VA=A —d?), cd+J/1-B1- d2)] .

Thus, a necessary condition that: @ is thatl; N 1> # @ or equivalently,

lab — cd| < V(1 —a?) (1 —b2) + V(L — A1 - d?).

9)
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Conversely, ifxg € I1 N Iz, thenA(xo, y)[{1, 2, 3}] and A(xo, y)[{1, 3, 4}] are PSD
andA (xg, y) has a PSD completion by Proposition 2. Therefore, in orderAlat y)
have a PSD completiofR # @) it is necessary and sufficient that inequality (9)
holds. (This criterion is given in [2].)

Now assume that (x, y) has a unique PSD completion. Th&nn 7> must be a
single point. If/; and I are nondegenerate intervals, this occurs if and only if

ab+ V(1A -a?>)1L-b)2=cd TV 1= c2)(1—-d?),
equivalently,

lab — cd| = V(1 — a?)(1 — b2) + /(L — A (1 — d?).
Otherwisely = {ab} andja| =1 or|b| =1,0rl» = {cd} and|c| =1or|d| = 1. If
la] =1, thenab € I, i.e.,|ab — cd| < /(1 —c?)(1 — d?), or on simplifying 1+
2abcd — b? — ¢? — d? > 0. Adding and subtracting® = 1, we can write this in a
symmetric form as 2- 2abcd — a® — b%? — 2 —d? > 0. The case$h| =1, |c| =
1, and|d| = 1 give the same inequality. It remains to observe théi ifi I, is a sin-
gle pointxg, then at least one oA (xo, y)[{1, 2, 3}], A(xo, ¥)[{1, 3, 4}] is singular.

Regardingy as the unspecified entry ii(xo, y), it follows from Proposition 2 that
there is a uniqueg such thatA (xo, yo) is PSD. We have proved:

Proposition 3. The completion region R of the partial PSD matAxr, y) givenin
(8) is a single point if and only if either

lab — cd| = V(1 — a1 — b2) + v (1 — c2)(1 — d?), (10)

or

one ofa, b, ¢, d has modulud and
a® + b + ® + d? < 2(1 + abed).

In Section 7 we give another formulation of this result in Proposition 6.

The argument preceding Proposition 3 also shows that the completion fegion
for A(x, y) cannot be a horizontal or vertical line segmeHbwever, it can be any
point (xo, yo) in the square. To see this, choose amy|c| < 1, such that

1 xo Yo
x 1 ¢
Yo ¢ 1

is PSD, which is possible by Proposition 2. The# 2xgyoc > xg + yg + ¢?, 50 by
Observation 1 and Proposition 3, the completion rediai the matrix

1 1 x o

1 1 xo vy

x xo 1 ¢

yo y ¢ 1
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is {(x0, yo)}.

Case I1. At the other extreme, suppose that=b =c=d = 0. Then A(x, y) is
permutation similar to

HAEI

so the PSD completion region is all 8f The converse is also true. In fact, if the
PSD completion region contains two corners of the sq@athen necessarily =
b =c =d = 0. To see this, assume that

1 a 1 d 1 a -1 d
AL D) = “1 ; ’i ¢1= and A(-1,1) = _i ; b i
d 1 ¢ 1 d 1 ¢ 1

are PSD. Then, by Observation A(1, 1)[1, 2,3], A(1,1[1,3,4] and A(L, 1)
[1,2,4] are PSD if and only it = b, ¢ =d anda = d, respectively. Hence, we
must haver = b = ¢ = d. Similarly, A(—1, 1)[1, 2, 3]is PSD ifand only itz = —b,
so we haver = b = ¢ = d = 0. A similar argument applies for any other pair of
corners ofS.

So we may assume, whenever convenient, fihat|b|, |c|, |d| < 1 and are not
all 0. If (x, y) is a boundary point of the completion regiBnthen det (x, y) = 0.
We have

detA(x,y) = D+ 2Ex + 2Gy — 2Fxy — x%— y2 +x2y2, (11)
where
D =1—a?—b?—c? — d? + a?c? — 2abed + b%d?,
E=ab+cd, F=ac+bd, G =ad+ bc.
We wish to observe that the function dgtx, y) has no relative minima. For if
(x0, y0) is a relative minimum,
0% detA
0x2
so that|xp| = |yo| = 1. But then positive semidefiniteness of the 2-by-2 Hessian

matrix of detA (x, y) requires that

2

A
~—— (x0, y0) = 4xoyo — 2F =0
OxQy

SO|F| = 2|xg| |yo| = 2 which implies|a| = |b]| = |c| = |d| = 1.
One consequence of particular interest is thatAdet y) cannot vanish at an
interior point of R ThereforeA (x, y) is PD at all interior points oR.

(12)

o2 detA
(x0,y0) =2(y4—1) >0 and &7 (x0,y0) =2(x3 - 1) >0

Case I11. For our final elementary case, we assume th@ 0) is PD and that the
boundary ofR is symmetric with respect to the origin. In particular, there must be



140 M.O. Omran, W. Barrett / Linear Algebra and its Applications 336 (2001) 131-166

boundary pointgxg, 0), (—xg, 0), 0 < xo < 1, and (0, yo), (0, —yp), 0 < yo < 1.

Then, detd(xg, 0) = detA(—xp, 0) = 0 implies thatE = 0, while detA(0, yg) =

detA(0, —yg) = O implies thatG = 0. Then the equation ddt(x, y) = 0 becomes

D — 2Fxy — x? — y2 4+ x%2y2 = 0, which is clearly symmetric about the origin.
We now determine the ordered quadruplesb, c, d) so that

E=ab+cd =0, G =ad+bc=0. (13)

Subcase 1. abed = 0. Without loss of generality, assume that 0. Then from
(13),ab = bc = 0.

() If b =0, thenA(x, y) becomes

1 a x O
a 1 0 y
x 0 1 ¢}’
0 y ¢ 1

and detA(x, y) = 0 reduces to
1—da®1 - —2acxy—x2—y2+x2y2=0. (14)

The graph of the curve in (14) insi&for a = .9, ¢ = .8 is shown in Fig. 4, and this
is typical ifac > 0 anda # c. If ac < 0,a # —c, the graph is a 90rotation of the
graph fora, —c. The completion regiolR is the interior and boundary of the inner
“ellipse like” region.

We will not give a complete description of the entire curve (14) here; we only
verify that the boundary oR is a proper subset of the curve fir| # |c|. Along
the liney = —x, detA(x, —x) = x* — 2(1 — ac)x? + (1 — a®)(1 — ¢?) vanishes at
x=xJ1+a)1l—c), x =£/(1—a)(1+c) and, fora + ¢, is negative at the
intermediate values = ++/1 — ac. Similarly, alongy = x, detA(x, x) vanishes
atx =+/1+a)(1+c¢), x = /(A —a)(d —¢) and, forc ++ —a, is negative at
the intermediate values = ++/1 + ac. (For the values of:, ¢ in Fig. 4, there are
two zeros of defA(x, y) alongy = x that lie outsideS) We will consider the case
la| = |c| after a discussion of singular points. SirRés a closed convex set, it must

05

Y01 \ \

-0.51

-1 |
-1 -0.5 Q 0.5 1

Fig. 4. A smooth PSD completion region for the 4-cycle.
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be the inner “ellipse like” region as claimed. Thus we have shown that there can
be points(x, y) not in R for which detA(x, y) = 0. It is easily seen that the curve
detA(x, y) = 0is symmetric about the lings= +x. If ¢ = 0, thendetA(x, y) =0
reduces to 1 a2 — x2 — y2 + x2y2 = 0, which is also symmetric about the two
axes. The boundary & is a smooth simple closed curve as can be seen by writing
the equation in polar form:? — r#sir? 2 = 1 — a2.

(i) If b # 0, thena = ¢ = 0 and, upon interchanging the paits c¢) and (b, d),
this is the same as the case discussed in (i)

Subcase 2. abed #+ 0. Then from (13)d = —ab/c = —bc/a, which impliesa? =
¢?, giving two isomorphic cases:= a, d = —b andc = —a, d = b.
We consider just the first case= a, d = —b. ThenA(x, y) becomes

1 a x -b

a 1 b y

x b 1 al’
—-b y a 1

and detA(x, y) = O reduces to
(1—a?—bH2 - 2a® - bA)xy —x2 —y2 +x%2 = 0. (15)
By (9), A(x, y) has a PSD completion if and only if
a®+b% < 1. (16)

Note that (15) has much in common with (14); in fact, it can always be written in
that form. To see this, first replaeeby h in (14), so

1- h2)(1 — c2) — 2hexy — x2— y2 + x2y2 =0.

To show that (15) can be put in this form, it suffices to show that givgnwith
a? + b% < 1, there existr, ¢ with ||, |¢| < 1 such that

he = a® — b, A-—1*A - =1A-a?-bpdD2 (17)

If 52 = a2, takec = 0 andh? = 4a?(1 — a?). So supposé? + a2; we just give the
argument in the case® > b2. If b =0, let h = ¢ = a; so assumé # 0. Then, in

the variablesh andc, the curvehe = a® — b? is a hyperbola intersecting the first
and third quadrants d§, and (va2 — b2, v/a2 — b?) lies on the curve. Moreover,
(Va2 + b2, Va2 + b?) and (y/1 — (1 — a2 — b2)2, 0) are points on the curvel —
h2)(1—¢?) = (1 — a? — b%)2. Since these are on opposite sides of the branch of
he = a? — b2 in the first guadrant, by a continuity argument there is a p@igtco)

in the first quadrant lying on both of the curves in (17). This concludes the argument.
It follows that the set of possible completion regions in Subcase 2 coincides with the
set of completion regions in (i) of Subcase 1 (excluding those for waick: |c|).
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Fig. 5. PSD completion regions with singular points.

5. Singular pointson the boundary of R

The completion regiomR for A(x, y) is extremely sensitive to the values of the
specified entries, b, ¢, d. Four examples are given in Fig. 5.

Unlike the region in Fig. 4, the boundary Bfin these four cases is not smooth
because there are points on the boundarfy af which there is not a unique tangent
line. These points on the boundaryR®fre singular points, defined as follows:

Definition 3. A singular point(xg, yp) of Ris a point on the boundary & simulta-
neously satisfying the equations:

detA(x, y) =0, E detA(x, y) =0, i detA(x, y) =0. (18)
Ox Oy

(We note that singular points of a curve need not always be sharp points; they may
in some cases appear smooth.)

From Eqg. (11), these three equations are

D+ 2Ex + 2Gy — 2Fxy — x? — y2 + x%y2 = 0, (19)

E—Fy+x(3°=1)=0 (20)
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and
G—Fx+yx?—1)=0, (21)

respectively.

As a simple example, consider (i) of Subcase 1 of Case Ill in Section 4, in which
b =d = 0. We also assumiz|, |c| < 1 (otherwiseRis the single point0, 0)). Then
Egs. (19), (20) and (21) become

a- az)(l — cz) — 2acxy — X2 - y2 +x2y2 =0,
—acy —x +xy2 =0,
—acx —y +x2y =0

We now show that there are two singular points on the boundRrif and only if
|c| = |a|. For the only if part, adding-x times the second equation ydimes the
third equation givesc? — y2 = 0, so y = +x. First substitutingy = x in the first
and second equations gives

x* =2+ ac)x® + (1 -d®>(1—-c?) =0,
%3 — (1+ac)x =0.

Sincela|, |c| <1, x #+ 0 and we find thak? = 1+ ac so that(1+ ac)? = (1 —
a®)(1 — ¢?), which reduces tda + ¢)2 = 0. Hence = —a. In this case, the two
points(£+/1 — a2, £4/1 — a?) both satisfy Egs. (19), (20) and (21), and hence they
are singular points ofiR. Similarly, if y = —x, thenc = a and the singular points
are then++/1 — a2, /1 — a?). For|c| # |a|, the boundary is smooth as in Fig. 4,
and this completes the special case.

It is also convenient to give Eqgs. (20) and (21) in the form obtained by apply-
ing partial derivatives directly to det(x, y) in (8) (by the product rule for deriv-
atives, the derivative of a determinant is the sum of the determinants obtained by
differentiating one row at a time):

19 a 1 y

——detA(x, y) =detA[{2,3,4},{1,2,4})]=det|x b c¢| =0, (22)

2 0x d y 1

192 1 a x|

23y detA(x, y) =detA[{1,3,4},{1,2,3})]=det|x b 1[=0. (23)
Y d y c

In Section 6 we investigate all the possible factorizations ofAdet y). We call
a factor of detd(x, y) simple if its multiplicity is one. The following lemma shows
that the number of singular points cannot exceed the number of simple irreducible
factors of detA (x, y).
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Lemma?2. AssumaletA(x, y) given by(11) factors into ¢ simple nonconstant ir-
reducible polynomials. Then the number of singular points on the boundary of the
curvedetA(x, y) = 0is bounded above by c.

Proof. Consider (19) for de (x, y) = 0 and homogenize with a third variatdéo
obtain the polynomial

flx:y:z) = Dz* + 2Exz® + 2Gyz3 — 2nyz2
X222 - (22 4 22 (24)
which defines a curve in the complex projective plane.

Sincef(1:0:0) = f(0:1:0) =0, (1:0:0) and(0:1:0) are points at infinity of
the curve in (24). The partial derivativesfodre

d

a_f =2Ez% — 2Fyz? — 2x7% + 2xy?,
X

d

6_f =2Gz° — 2Fxz° — 2yz2 + szy,
y

of

3 —4Dz% + 6Exz® + 6Gyz2 —4Fxyz — 227 — 2y2z.
2
At (1:0:0) and(0:1:0), Vf = (0:0:0), sof is singular at both points at infinity.

We now make use of the following result for a reduced projective plane curve
(i.e., one with no irreducible components of multiplicity greater than one), which is
an immediate consequence of problem 5-25 [3]. If such a curve has degrekc
irreducible components, we have

n-—1D(n -2

# of singular pointsg — +c—1 (25)

Since by hypothesis ddt(x, y) has only simple irreducible factors, so dggs: y:
z). Since degf (x:y:z) = 4, by (25), # of singular points ¢ + 2. Excluding the
two singular points at infinityf has at most singular points in the affine plane and
consequently there can be at mostngular points of the curve ddt(x, y) = 0. O

In the following two sections we examine ways that singular points arise and their
connection with the rank of a completion 4fx, y),

6. Factorization of det A(x, y)

In this section we assume that the PSD completion regaf A(x, y) is not
empty.
If det A(x, y) can be factored as

detA(x, y) = f(x, y)g(x, y), (26)
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wheref andg are nonconstant polynomials xandy, then since

0 og Of 0 g
— detA = f=+ = —det A = f—=
5, de (x,y) fax+axg, 3y et A(x, y) fay+

we have the elementary, but useful result:

of
Jy &

Proposition 4. If Eq. (26) holds and(xo, yo) is a point on the boundary of R that is
a common zero of (x, y) = 0andg(x, y) = 0, then(xg, yo) is a singular point of
R.

We now proceed to determine the ordered quadruple$, c, d) for which
detA(x, y) can be factored, and the coordinates of the singular points in each case.

Casel. fand g are both quadratic polynomials in x and y.

Let

f(x, ¥) = azox? + ar1xy + aozy® + a1ox + aory + aoo
and

g(x, ¥) = boox? + br1xy + bozy? + b1ox + bory + boo.

I. Supposeayg #+ 0. Comparing the terms of the produgix, y)g(x, y) with
those of (11), we set the coefficientsdf x3y andx3 equal to 0. That iszopb2o = O,
azob11 + a11b20 = 0 andazob1o + a10b20 = 0, which give usbog = b11 = b1g = 0.
This leavesasgboy as the coefficient ok2y2, so bgp # 0. Similarly, agy = a1 =
ap1 = 0, hencef andg reduce taagox? + azox + ago andbozy? + bo1y + boo, re-
spectively. Comparing terms again yieldsobor = 0, a10bo2 = 0, a2g bo2 = 1,
azoboo = —1, agobor = —1 andaooboo = D, which give usaio = bo1 =0, bgr =
1/az0, ago = —azpandbgg = —bg2. SO, f (x, y)g(x, y) reduces thz — 1)(y2 -1
and, hence,

1-0A+x)A-yA+y), (27)

a linear factorization of (11).

We now find necessary conditions anb, ¢, d so that (27) is obtained. Com-
paring the terms of (27) with (11), we musthave= F = G = 0 andD = 1. From
Subcases 1 and 2 of Case lll in SectiorE4+= G = 0 implies eitheb =d =0 (c =
a=00orc=a,d=—-b(c=—a, d=0>).

With d =b =0, then F =0, impliesc=0o0ra=0. If ¢c=0, thenD =1
impliesa =0. Hencea =b=c=d =0.f c=a, d = —b,then1=D = (1 —
(a® + b?)2. If a® + b% = 2, then|a| = |b| = 1. For example, itz = b = 1, then

1 1 x -1

1 1 1
A =\ g 4 yl

1 y 1 1
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which has no PSD completion [5, p. 178]. The other three possibilitigafar, ¢, d)
are(1,-1,1,1), (-1,1, -1, -1) and(—1, —1, —1, 1), which also yield an empty
completion regiorR. Thusa? + b2 cannot be 2, sa? + b? = 0, and agaim = b =

¢ =d = 0. Thus, (27) is a factorization of (11) if and onlydf b, ¢, d are all zero,
and in this case the singular points d@rel, —1), (-1, 1), (1, —1), (1, 1). By (27)
and Lemma 2, these are the only singular pointR.of

Il. Supposeaizg = ag2 = bag = bg2 = 0. Then,f andg reduce to
ajixy + aiox + ao1y + aoo
and
biixy + b1ox + bo1y + boo,

respectively. Comparing the coefficient ofy? in (11) with that of the product
f(x, y)g(x, y)impliesai1b11 = 1. Without loss of generality, we may assume =
b11 = 1. Otherwise b11 = 1/a11, and by factoringzy1 from f, 1/a1; from g, and
by renaming the coefficients 6andg, the productf (x, y)g(x, y) becomes

(xy 4 c10x + co1y + co0) (xy + diox + do1y + doo)- (28)

Comparing the coefficients afy andx? in (11) and (28) gives, respectivebyo +
d10 =0, c10d10 = —1 which yielddig = —c10 = —1/c10 and this impliesdig =
—c10 = £1. Similarly,do1 = —co1 = £1. So (28) becomes

(xy + c10x + cory + coo)(xy — c10x — cory + doo). (29)
Again, comparing the coefficients of y, xy and 1 in (11) with those of the prod-
uct (29) yieldscio(doo — coo) = 2E, co1(doo — coo) = 2G, doo — 2co1c10 + coo =
—2F andcoopdoo = D which gives

doo — coo = 2E /c10 = 2G /co1, (30)

doo = —coo + 2co1c10 — 2F and C%O + 2(F — co1c10)co0 + D = 0. Hence, solving
the last two equations faip and thendyg yields

coo = co1c10— F = \/FZ — 2co1c10F + célcfo —D

and

doo = corc10— F F \/FZ — 2c01010F + 3,35 — D.
With (30),

doo — coo = 2E /c10 = 2G /co1 = :I:Z\/F2 — 2cp1c10F + C(lecfo —D. (31)
Since|co1| = |c10| = 1, we have two subcases to consider:
(i) c10c01 = 1. Then (31) gives
E=G=+J/(F-12-D (32)
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FromE = G, eitherc = a ord = b. Without loss of generality, assume= a. Then,
E=a(b+d), F=a’+bd, D=1-2a%—b?—d?+ a* — 2a°bd + b*d?, and
with a little algebra, (32) reduces t@ — a?)(b — d)% = 0, so eitherd = b or |a| =
1. We first show thata| = 1 impliesd = b. So suppose = 1. Thenc =a = 1 and

1 1 x d

1 b
awn= |t 0
d y 1 1

By Observation 1A(x, y)[1, 2, 3] andA(x, y)[1, 3, 4] are PSD ifand only ifx = b
andx = d, respectively. Saf = b. A similar argument shows if = —1 thend = b.
So, we have: = ¢ andd = b. ThenE = G = 2ab, F =a? +b%, D = (1—a?—
b2)2 — 4a2b2, coo=1— a? — b% + 2ab anddoo = 1—a?—b? F 2ab. Since,dgo—
coo = 2E /c10, thencig = 1 implies thatcgg = 1 — a? — b% — 2a4b and doo=1-—
a® — b2 + 2ab, while c19 = —1 implies thatcgg = 1 — a? — b2 + 2ab and doo =
1 — a? — b% — 2ab. In either case, (29) becomes

(xy+x+y+1—a?—b%—2ab)(xy —x —y + 1 —a® — b? + 2ab). (33)
We now describe the completion regiBrfor the matrix

1 a x b

a 1 b
MEN=11 1 .

b y a 1

There are several cases to consider.

|b| # |al, |a|, |b] < 1:Inthis case (33) does not factor any further anddét, y)
= 0 describes two hyperbolas symmetric abput x. Writing these as

C+DO+D =(@+h?% -y -1 =(@-b?

we see that they have asymptotes- —1, y = —1, andx = 1, y = 1, respective-

ly. The first graph in Fig. 5 is an example of this case. Each hyperbola has one
branch passing through the squé&d.et B, (B_) be the branch passing through
corresponding to the hyperbola with asymptates 1,y =1 (x = -1,y = —1).

We claim that the PSD completion regiéhis the region bounded bg, and B_.
Solving for the common zeros of the two factors in (33) we find tRatand B_
intersect at the two points

Pr: (ab VA=A -2, ab+ V(1 —a® Q- b2))
and
Py: (ab+\/(1—a2)(l—b2),ab— (1—a2)(1—b2)).

The midpoint ofP; and P; is (ab, ab). Substitutingt = y = ab in M, we have
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1 a ab b

a 1 b ab
M(ab,aby = 1
b ab a 1

Since detM (ab, ab) = (1 — a®)?(1 — b?)? > 0, and each principal submatrix of or-
der 3 has determinant equal tb— a?)(1 — b%) > 0, M(ab, ab) is PD. It follows
that M (x, y) is PD at each point in the region bounded By and B_. Moreover,

at the centers of the two hyperbolas, 8&tl, 1) = (¢ — b)?[(a + b)2 — 4] < 0 and
detM (—1, —1) = (a + b)?[(a — b)?> — 4] < 0. Consequently, d& (x, y) is nega-
tive at all interior points of any line segment from (1, 1) to a pointBnbetween

P1 and P; and at all interior points of any line segment frgml, —1) to a point on
B_ betweenP; and P,. BecauseR is a convex set, it is contained in, and therefore
equal to, the region bounded By andB_. By Proposition 4P, and P, are singular
points and by Lemma 2, there are at most two singular points.

0 # a = b # +1: Then (33) factors further to
=D =D&y +x+y+1-4d?,
andM (x, y) reduces to

1 a x a
a 1 a vy
Kx.y=|_ , 1 4
a y a 1

The point(|a|, |a|) is inside the regioiR bounded by = 1, y = 1 and the branch
ofxy + x + y + 1 — 4a? = 0 passing througB. Sincek (|a|, |a|) is PD, andk (-1,
—1)isnot PD, it follows thaRis the PD completion region fdt (x, y). The singular
points are (1, 1)(1, 242 — 1), and(24? — 1, 1). By Lemma 2 there can be no others.
The third graph in Fig. 5 illustrates this case.

0+ a = —b+ +1: Then (33) factors a& + 1)(y + 1)(xy —x — y + 1 — 4a?),
and the PSD completion region is the region bounded by—1, y = —1, and the
branch ofcy — x — y + 1 — 442 passing througB. The singular points are-1, —1),
(=1, 1— 24%) and(1 — 242, —1).

a = b = 0: This was done in part I.

la] = 1 or|b| = 1: By Proposition 3 the completion region is a single point. For
example, ifa = 1, itis (b, b), which is a singular point.
(i) c10c01 = —1. By following an argument similar to (i) above,= —a and
d = —b. Then (29) factors as
(xy —x+y—1+a?+b?+2ab)(xy +x —y — 1+ a® + b% — 2ab). (34)

The results are like those in (i). There is one singular pointli=1 or |p| = 1,
there are two singular points if & |b| # |a| # 1, three ifa =b = —c = —d or
a=—-b=—c=dwith|a| #0,1, andfourifa =b=c=d =0.
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Case 2. fis cubic and gis linear in x and y.
Let

F(x,y) = asox® + azix®y + a1oxy? + aosy® + azox?
+ ai1ixy + aozy2 + aiox + ao1y + aoo

and

g(x,y) = biox + bo1y + boo.

I. Supposerzg # 0. As in | of Case 1 above, setting the coefficientsbandx3y
equal to 0 give®19 = bp1 = 0 and hence, no factorization exists.

Il. Supposeizp = agz = 0, a1 # 0. Thenf reduces ta1x2y +a12x y2+asox?+

a11xy + ag2y? + aiox + ao1y + aoo.
Following an analysis similar to Case 1 we obtain

F(x, g, y) = (x%y + 202 4 c10x + co1y + c00) (¥ + doo). (35)

Comparing coefficients of?y, x2, y2, xy, x, 1 andy with the terms of (11) yields
c20 = —dpo = %1, co1 = —1, c10=—2F, E = coF, coo= —D/cp0 and &5 =
(c39— D)/c20. Thenf(x, y)g(x, y) becomes

(x%y + ca0x® — 2Fx — y — D/c20)(y — c20), (36)
wherecyg = +1.
If coo=1,thenE = Fand 25 =1— D.With E = F, theneithee = b ord =
a. Without loss of generality, assunae= b. Then, from ZG = 1 — D, eitherd = a
or |b| = 1. An argument similar to that of Il of Case 1 shows thab = +1, then
d =a. Sowe have = b andd = a. ThenF = 2ab, D = 1 — 24a% — 2b? and (36)
reduces to

(x%y +x2 —dabx — y — 1+ 24° + 267 (y — 1). (37)

If |b| # |al, then (37) does not factor any further. The completion region is the re-
gion bounded by?y + x2 — 4abx — y — 1+ 24?4+ 2b?® = 0 andy = 1. The points
(ab —/(1—a?®)(1—b?), 1) and(ab + /(1 —a?)(1 - b?), 1) are the two com-
mon roots of the two factors in (37), hence they are singular points. The second
graph in Fig. 5 illustrates this case. I£4 |b| = |a| # 0, then (35) reduces to one of
the factorizations in Case 1 above with three singular points&f1, then(a, 1) is
the only singular point and 5 = —1, then(—a, 1) is the only singular point. The
casen = +1 is similar.

If co0 = —1, then following the above argument, (36) becori€s —x2—2F x —
y+ D)(y + 1) with E=—F and 25 = —1+ D, which givesc = —b, d = —a
and (36) reduces to

(x%y — x? + dabx — y + 1 — 24> — 2b7)(y + 1). (38)

As in the case»g = 1, there is one singular point j:| = 1 or|b| = 1, and there
are two singular points if 3 |b| # |a| # 1.
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Table 1
(a,b,c,d) Factors
(0,0,0,0) @E-=Dx+DHO-DO+D
a#+0
(a,a,a,a) (xy +x+y+1—4a2)(x—1)(y—l)
(a, —a,a, —a) Xy —x—y+1-4a®>)x+ Dy +1)
(a,a, —a, —a) (xy—x+y—l+4a2)(x—1)(y+1)
(a,—a,—a,a) (y+x—y—1+4a®)(x + Dy — 1)
1], le| # lal
(a,b,a,b) (xy+x+y+1—a?—b2—2ab)(xy —x —y+1—a? — b2 + 2ab)
(a,b, —a, —b) (xy—x+y—1+a?+b2+2ab)(xy +x —y — 1+ a2 + b2 — 2ab)
(a,b,b,a) (x2y +x2 —dabx —y — 14 242 + 2b%)(y — 1)
(a,b, —b, —a) (x%y —x2 4 dabx —y +1—2a%2 — 209 (y + 1)
(a,a,c,c) (xy2+y2—x—4acy—1+2a2+202)(x—1)
(a,—a,c,—c) ()cy2 — y2 —x—dacy+1-— 2a2 — 2(,‘2)()( +1

I1l. Now supposeiz1 = 0 andaz2 # 0. This is equivalent to reversing the roles of
x andy and the roles o€ anda in the above argument, and results in the factoriza-
tions:

(xy2+y2—x—4acy—1+2a2+262)(x -1
and
(xy2 — y2 —x—4dacy+1-— 2a% — 202)(x +1).

Summarizing, we have:

Theorem 1. LetA(x, y) be given by8) and assume that the PSD completion region
of A(x, y) is not empty. Then the polynomidétA (x, y) factors into nonconstant
polynomials if and only if the quadruple, b, ¢, d) satisfies one of the conditions in
Tablel.

Furthermore for each of the above quadruples the number of singular points and
the location of each are listed in Tabke

Singular points occur in some instances in which Alat, y) does not factor,
which follows from the results in the next section.
7. Rank

If (xo, yo) is @ boundary point of the PSD completion regiythen rankA (xg, yo)

< 3. In particular, this occurs R = {(xo, y0)}, a single point. If ranld (xq, yo) < 2,
then(xo, yo) satisfies (22) and (23) and so by (18) we have:
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Table 2
(a,b,c,d) Singular Points
(0,0,0,0) 1,1),1,-1),(-1,1),(-1,-1)
a#0,+£1
(a,a,a,a) (1, 1), (1, 24%2 - 1), (2a% — 1, 1)

(a,—a,a, —a)
(a,a,—a, —a)
(a,—a, —a,a)

(=1, 1), (1 — 242, —1), (=1, 1 — 242)
1, -1), (1,1 - 2a%), 2a%2 -1, -1)
(-1,1), (1— 242, 1), (1,242 — 1)

lal, |b], e # 1 2

b1, c| # lal

(a,b,a,b) (ab+ /(1 —a?) (A —b2),abF (1 —a?)(1—b2)

(a, b, —a, —b) (ab £+ (1 —a?)(1—b2), —ab + /(1 —a?)(1 - b?))
(a,b,b,a) (ab++v(1—a?)(1—-b2),1)

(a, b, —b, —a) (ab++v/(1—a?®(1—-b?), -1)

(a,a,c,c) 1, ac £/ (A —a?)(1—c2)

(a, —a,c, —c) (=1, —ac £ /(1 —a®) (1 — c?)

(a,b,c,d) # Singular Points  (a, b, ¢, d) Singular Points
(1,b,1,b) 1 b, b) (a,1,a,1) (a,a)
(=1,b,—-1,b) (—b, —b) (a,—1,a,-1) (—a, —a)
(1, b, -1, —b) (b, —b) (a,1, —a, 1) (a, —a)
(-1,b0,1, —-b) (—=b, b) (a,-1,—a,l) (—a,a)
(a,1,1,a) (a,) 1,b,b,1) (b, 1)
(a,-1,-1,a) (—=a, 1) (=1,b,b,-1) (=b, 1)
(a,1, -1, —a) (a, -1 1, b, —b, -1 (b, 1)
(a,-1,1, —a) (—a, -1 (=1,b,—b,1) (=b, -1
1,1c0 1,0 (a,a,1,1) A, a)
(-1, -1,¢,0) 1, —c¢) (a,a,—1,-1) 1, —a)
1, -1,¢,—0) (-1, —o) (a,—a,l1l,-1) (-1, —a)
(-1,1,¢c,—c) (-1,¢) (a,—a,-1,1) (-1, a)

Proposition 5. If A(xg, yo) is PSD with rankL or 2, then(xg, yo) is a singular point
of the completion region R.

The converse of Proposition 5 is false as can be seen from the example

Alx,y) =

The completion regioR is the point(a, a), and furthermore

1 a x 1
a 1 a vy

4 1 ua —§<a<1.
1 y a 1

i detA(a,a) = i detA(a,a) =0,
Ox Oy
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S0 (a, a) is a singular point oR. But, detA(a, a)[1, 2, 3] = (1 — a)2(1 + 2a) # 0,
sorankA(a, a) = 3.

Nevertheless, Proposition 5 enables us to identify many instances of singular
points.

In this section we determine all quadruples b, ¢, d) for which there is a PSD
completion of rank at most 2, a question of much interest in its own right. We will
show that this can occur in three ways: either there is a unique PSD completion,
or the determinant factors, or the completion region contains a unique rank 2 PSD
completion but it is not a single point. The first two cases are not mutually exclusive;
however, in the third case the determinant does not factor and this gives new instances
of singular points other than those in the last section.

In order to identify thea, b, ¢, d) for which there is a PSD completion of rank at
most 2, we first recall a result from [2, pp. 9-10].

Lemma3. Let0 < «, 8, ¥y < w. Then the matrix

1 COSx COSy
B = | cosx 1 cosp
cosy cosp 1

is PSD if and only if
a<B+y, B<aty, y<a+p, atp+y<2n. (39)
Furthermore B is singular if and only if one of these inequalities is an equality.

LetO< «, B,y,8 < 7, and let

1 COsx ? cos’
COSu 1 cosp ?

? coss 1 cosy
C0S§ ? cosy 1

C =

At this point it is useful to restate Proposition 3 in termsxof3, y, §. The equality
in (10) becomes

| cosa cOSB — cosy cosd| = sina sinB + siny sing,
which is equivalent to

COSx COSB = sina sinB = cosy coss F Siny sing.
Therefore,

coSa — B) = cogy + §) or coSu + B) = cogy — §).
The first equality occurs if and only if either

a—B=y+4s, B—a=y+s aoa—B+y+§=2nm,
or
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B—a+y+86=2m,
and the second occurs if and only if
a+B=y—-68, a+B=58—y, a+pB+y—8=2nm,
or
a+p+6—y=2n.
Therefore, the equality in (10) occurs if and only if one of the following hold:

a=B+y+68, BH+y+d=27+a,
B=a+y+46, aoat+y+s=2n48,
y=a+p+8, a+p+6=21+y,
S=a+B+y, a+B+y=21+4.

This also shows that the equality in (10) is in fact symmetrig,ib, ¢, d. We could
also substitute in the inequality in (10), but it is more instructive to derive a different
equivalent condition in terms af, 8, y, §. Supposéa| = 1, i.e.,a = 0 orz. Then
the matrix
1 +1 ? cos

+1 1 cosB ?

? cosB 1 cosy
?

| COs$ cosy 1
has a PSD completion if and only if
1 +1  £cosB  coss
+1 1 coss + coss
+cosf  cosp 1 cosy
C0S$ +coss  cosy 1

is PSD, i.e., if and only if

1 cosB  cosé
cosp 1 cosy
| COS§  cosy 1

is PSD fora« = 0 and

1 cosp —Co0ss§ 1 cosg co9m —§)
cosp 1 cosy | = cosp 1 cosy
| —Ccosé  cosy 1 cogw —43§) coOSy 1

is PSD fore = 7. The matrix fore = 0 is PSD if and only if
BLy+d, y<pB+3, §<B+vy,

and
B+y+d8<2n
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by Lemma 3. Sincer = 0, we may write these as
a+B<y+8, a+y<B+s a+8<B+y, a+p+y+5< 2
The matrix fore =  is PSD if and only if
BSy+m—4, y<p+n—-45 wn-86<p+vy,
and
B+y+m—38<2n,
or if and only if
B+é<a+y, y+é<a+p 2n<a+B+y+6, B+y<a+td.

The analogs of these inequalities f6r=0 or 7,y =0 orz, and§ = 0 or = are
clear. Thus, we have;

Proposition 6. The matrix

1 cosx ? cos’
COSu 1 cosp ?

? cos 1 cosy
C0Ss§ ? cosy 1

C =

has a unique PSD completion if and only if
(@) one of the following hold

a=pB+y+34, B+y+d=21+a,
B=a+y+34, a+y+6=2r+8, (40)
y=a+ B+, a+B+6=21+y,
S=a+p+vy, a+B+y=21+43,

or
(b) {a,B,y,8}N{0, 7} #+ @, and ifa = 0(rr), all of the following hold

a+B <)y +34, a+y < (2)B+4,
a+8< ()B+y, a+B8+y+38<(>)2n,

whileif 8 =0orm, y =0orx, or § = 0or &, analogous inequalities are required
to hold.

Corollary 1. If one of the equalities i40) hold, then C has a unique PSD comple-
tion C and rank(C) < 2.

Proof. Assume that one of the equalities on the left-hand side of (40) holds. Without
loss of generality, say



M.O. Omran, W. Barrett / Linear Algebra and its Applications 336 (2001) 131-166 155

d=a+B+y.
Let
1 cosx cosd coda+pB+y)
_ COSu 1 cosp CoSs¢p
M®,¢) = cost cosp 1 cosy
coSe+pB+y) cosp cosy 1

be the unique PSD completion 6f Using Lemma 3M (6, ¢)[1, 2, 3] is PSD only
if 0 <a+pBandM (@, ¢)[1,3,4] is PSD only if6 +y > o + 8 + y, and hence,
0 = a + B. Similarly, by Lemma 3 againf (9, ¢)[2, 3, 4] andM (9, ¢)[1, 2, 4] are
PSDonlyifp = B+ y. ThusM (« + B, B + y) is the unique PSD completion 6f
By Lemma 3, all the 3x 3 principal minors are 0. Alsa{ (« + 8, 8 + y) is singular
because the completion region is a single point. Thus, Mok + 8, 8 + y) < 2.

A similar argument shows that the unique PSD completio@ b&s rank at most
2ifa+B+y =27 +38.Inthiscasef =2r —a— B and¢p =27 — 8 — y. By
the symmetry of equations (40), this concludes the prodf]

We now find necessary and sufficient conditionsxors, y, § such that the ma-
trix C has a PSD completion of rank at most 2. We will make use of two observations.
Let

1 CoOsx C0sSf  COoSs
COoS« 1 COoSf  CO0Ss¢

Co,9) = cos® cosp 1 cosy |’ (41)
COS§ C0S¢p CcOosy 1
with0 <9, ¢ <.
Observation 2. RankC (8, ¢) < 2if and only if
1 cosy CosH | 1 cos9 CoSs |
det| cosu 1 cosf | =0, det|cosd 1 cosy | =0, (42)
| cost  cosp 1 ] C0S§ cosy 1
1 cosB coso | 1  cosx COSS]
det| cosp 1 cosy | =0, det|cosu 1 cosp [ =0 (43)
| COs¢  cosy 1 CO0S§ COs¢p 1 ]

anddetC (9, ¢) = 0.

Observation 3. We have raniC (0, ¢) < 2ifand only ifC (6, ¢) is the Gram matrix
of four unit vectorgu’, i, us, us} in R?; i.e., cij =<uj,uj>, 1<i,j<4

By Lemma 3, (42) is satisfied if and onlyéfsatisfies one equation from the left
and one equation from the right of (44), below:
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oa+p y +48
oa—p y —3§
=60= 44
—a+p -y +$6 (44)
2r —a—p 2r —y —§

There are 16 cases which give the following 12 possible linear relations between
a, B, y ands:

S=a+B+y, v=a+B+8, B=a+y+3s, a=p+y+3 (45

2r+d=a+B+y, 2n+y=a+pB+4,

2n+B=a+y+4s, 2r+a=B+y+3 (46)

and

a+pB=y+48 a+y=p+3,
a+s=B+y, a+B+y+d6=2m

Thus, a necessary condition f@to have a PSD completion of rank at most 2 is
that at least one of the 12 equations in (45), (46) and (47) holds. We now investigate
whether this is also a sufficient condition, and furthermore, describe the completion
region for each possibility that can occur.

Comparing the equations in (45) and (46) with Corollary 1, we have a unique PSD
completion of rank< 2 in these cases. So it remains to consider those cases where
none of the equations in (45), (46) holds. We begin with the following elementary
fact.

(47)

Observation 4. If rank C(9, ¢) < 2 and none of the equations {@#5) and (46)
holds then0 < o, 8, ¥, 8 < 7.

Proof. By way of contradiction, suppose one ®f 8, y, § is 0 or . Without loss

of generality, let it bex. First supposer = 0. Then, by Observation 3, the two unit
vectorsuy andu> are identical and we have one of the diagrams in Fig. 6(a), i.e.,
either

B=a+y+4s, é=a+p+y, y=a+p+4,
or
B+y+dé=21+a,
a contradiction. Suppose= m. Then we have one of the diagrams in Fig. 6(b), i.e.,
a=B+y+8, a+f+s=2nr+y, a+y+B=21+3,
or
a+dé+y =248,

a contradiction. O
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1,2 1,2 1,2 /L 1,
4
(a) 4
4 3 3 3
~/ =~/ / /
2 12 12 A 12— 1
(b) ¢

4
Fig. 6. Possible configurations of unit vectors.

The matrix
1 1 0 O
1 1 0 O
0O 01 0
0 0 0 1

shows that the hypothesis ragke, ¢) < 2 cannot be omitted.
We now consider the four equations in (47). There are two cases:

I.  Two of the equations in (47) hold simultaneously. There(ébe: six possibil-
ities.
II. Exactly one of the four equations in (47) holds.
Consider Case |. The first possibility is that+ 8 =y + 8 anda +y =8 +

8. Thena+ B —y =a+y — B, sop =y anda = §. Considering the remaining
five possibilities, we arrive at Table 3. The second and third columns in this table
give, respectively, the possible quadruplesg, y, 8) and(a, b, ¢, d) satisfying the
corresponding equations in the first column.

Note that these six cases are the same as those in Tables 1 and 2 for which
detA(x, y) factors and there are generically two singular points. We shall see that
each of these singular points gives rise to a rank 2 PSD completion. For the first
case in Table 3, the determinant factors into cubic and linear polynomials and for
the second case, the determinant factors into two quadratic polynomials. Since each
of cases 3-6 of Table 3 also gives one of these two factorizations, it suffices to just
consider the possibilities for the first and second cases.

Suppose we have the first cage 8, 8, @), 0 < «, B < &. Providedg # « and
B #+ m — a, we have exactly two rank 2 PSD completions,

1 cosyx coSuoa + fB) COSx
COSu 1 cosp 1
coSo + B) cosp 1 cosB |’

COSu 1 cosp 1
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Table 3.

Eq. (47) (. B, v, 9) (a,b,c,d)
a+B=y+$ (o, B, B, ) (a,b,b,a)
a+y=B+8 O<a,B<m lal, |b] < 1
a+B=y+$ (o, B,a, B) (a,b,a,b)
a+s=B+y O<a,B<m lal, 1b] < 1
a+B=y+$ (a,m—a,y,m—y) (a, —a,c,—c)
a+p+y+éd=2n O<a,y<m lal, |c] <1
at+y=B+$ (a,a,y,7) (a,a,c,c)
a+s=F6+vy O<a,y<m lal, le] <1
aty=p+8 (0, —a,m = f) (a,b,—a, =b)
a+B+y+d8=2n O<a,B<m lal, |b| <1
a+s=p+y (@, B, =B, 7 —a) (a,b,—b, —a)
a+pB+y+é=2n O<a,B<m lal, |b] <1

1 cosx coSa —f) COSx
CoSu 1 cosp 1
coSa — ) cosp 1 cosp
COSw 1 coss 1

By Proposition 5,(coj« + B), 1) and (coSa — 8), 1) are singular points of the
completion region; Theorem 1 then implies that there can be no other rank 2 PSD
completions. The second graph in Fig. 5 is an example of this case, and the two sharp
points on the boundary yield the two rank 2 PSD completions above.

If B =a # 3m, thenwe have the case, o, a, &), a ¢ {0, 37, 7}, with the three
rank 2 PSD completions,

1 CoSx 1 CoSu

1 Ccosx 1 cosx |’

M1 cosu 1 cosy |
COSw 1 COSx COS 2
) (48)
1 Cosw 1 Ccosx
| COsx COS2x COSu 1
1 COSsy COSZ COSw |
COSu 1 cosx 1
COSZr COSu 1 Ccosx
| Cosx 1 cosx 1 ]
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Since there are exactly three singular points in this case by Theorem 1, as before
there can be no other rank 2 PSD completions. The third graph in Fig. 5 illustrates
this case and the three ‘corners’ yield the three rank 2 PSD completions in (48).

If =7 —a # 37, wenowhave the case, 7 — o, 7 — o, @), a & {0, 37, 7},
with the three rank 2 PSD completions,

1 cosu -1 cosy |
COSu 1 — COSx 1
-1 — COSu 1 —cosa |’
COSu 1 — COSx 1
M1 cosw -1 cosy |
CcoSsw 1 —COSx  COS 2
, (49)
-1 — COSu 1 — CcOoSu
COSwx COS4x — COSu 1
M1 COSy —COSZ  COSx
COSw 1 — COSu 1
—COS2x —COSx 1 — CoSsux
COSu 1 — COoSu 1

Finally, if 8 =a = %n, we have the case = b = ¢ = d = 0 with four rank 2 PSD
completions, corresponding to the four corners of the sqgsiare

1010 10 -1 0
010 1 01 01
101 0|-10 1 of
0 1 0 1 01 01
(50)
1 01 0 [1 0 -1 O
0 1 0 -1 o 1 0 -1
1 01 o'|-1 0o 1 o
0o -1 0 1| 0 -1 o0 1

It remains to consider the second céseg, «, 8), 0 < «, B < 7. Provideds +
o andg # m — o, we have exactly two rank 2 PSD completions,

1 COSx cojo + ) cosp
CoSx 1 cosp coSa — B)
coSa + B) cosp 1 Cosw
cosp coSa — B) COSu 1 |
and
i 1 cosu coSa — fB) cosp
COoSu 1 cosB cosS« + B)
coSa — B) cosp 1 cosx
cosp coSua + B) CoSu 1 ]
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The first graph in Fig. 5 is an example of this case and the ‘corners’ of the lens shaped
region yield these two rank 2 PSD completions.

If B=a+ %n’, we have the cas&, o, o, «) and the same three rank 2 PSD
completions asin (48). I8 =7 —a + %n’, we have the cas@r, 7 — o, a, 7 — )
which has three rank 2 PSD completions that are sign similar to those of (49). Finally,
ifB=a= %n, we have the same four rank 2 PSD completions as in (50).

We have now established a one-to-one correspondence between each rank 2 PSD
completion of any quadruplg, 8, y, §) occurring in Table 3 and the singular points
associated with the quadruple, b, ¢, d) in Table 2 excluding those rows with ex-
actly one singular point. Each of those rows admits a unique PSD completion of rank
at most 2. This yields a partial converse to Proposition 5.

Proposition 7. Let(a, b, ¢, d) be a quadruple for whicl (x, y) has a PSD comple-
tion anddetA (x, y) factors. If (xg, yo) is a singular point of the completion region
R, then rankA (xg, yo) < 2.

We now consider Case Il in which we assume none of the equations in (45)
and (46) holds and exactly one equation in (47) holds. Thus, none of the cases in
Table 3 occurs. Also, in order to have a rank 2 PSD completion, we must have
0 <a,B,v,8 < m by Observation 4. Thus, by Table 1 in Theorem 1, we are in a
case in which def (x, y) does not factor. By Lemma 2, there is at most one singular
point in the completion region. So by Proposition 5, there is at most one rank 2 PSD
completion ofA(x, y). We now show that there is a rank 2 completion in each of
these cases.

(i) Assumea + 8 = y + §. Without loss of generality, we may assuimeés the
largest ofr, B, y, 8. Note that the largest is unique, fonif= «, thens = 8, which
is one of the cases in Table 3, and similarly = «; if 8 = «, thend =y =«, in
which case we gdty, o, o, «), which is a special case ¢f, «, y, y), the fourth case
in Table 3. Sox > y, § andB < y, 8. Also,a + 8 £ m,orelsea + 8+ y + 6 =
27, and we again have one of the cases in Table 3.

We now use Observation 3. We arrange four unit vectors as indicated by Fig. 7 so
thata, B, v, 8 are the angles between the first and second, second and third, third and
fourth, first and fourth vectors, respectively. This can be done singg8 = y + 6.

Sinced is the angle between the first and third vectors, eithero + g or else
0 =27 —a — B. Also, sinceg is the angle between the second and fourth vectors,
¢ =y — B. It follows that

2
3
1

Fig. 7.0+ =y +34.
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1 Cosu coSua + B) C0Sé
_ COoSu 1 cosp cosy — B)
CO.9) = coqu + B) cosp 1 cosy
C0sé cody — B) cosy 1

is a PSD completion of rank 2 which is necessarily unique. By Proposition 6 it is not
the only PSD completion.

The fourth graph in Fig. 5 is an example of this case withg, y. §) = (37, &,

27, 2). The unique sharp point on the boundargydesiiz, cosin)~ (—0.966, 0).

(i) « + 8 = B + y. Similar to (i), 8 + y # =, and we may assume< 8, y and
B,y < 6. Then, as in (i), we may orient four unit vectors®f as in Fig. 8, from
which we conclude th&t = 8 — « and eitherp = 8+ y orelse¢p =27 — 8 — y.
ThenC (9, ¢) is the uniqgue PSD completion of rank 2. Moreover, just as in (i), it is
not the only PSD completion.

(i) « +y = B+ 6. Thena + y # 7 and we may assunmg < «, y anda, y <
8. We may again orient four unit vectors i as shown in Fig. 9. Consequent-
ly, o =a — B8, ¢ =y — B, and again there is a unique PSD completion of rank 2.
Again this is not the only PSD completion.

(iv) @ + B + v + 8 = 2x. Without loss of generality, we assurads the largest.
Thena > 3. If « = 37, thenp = y = § = 3x, hence all four equations in (47)
hold simultaneously, a contradiction. So> %n. Moreover,a + 8 #+ 7, or else
a + B = y + 8 and two equations in (47) hold. Then, we may orient four unit vectors
in R? as in Fig. 10, from which it follows thal = o + g or 6 = 27 — « — 8, and

3
4&
1
2

Fig.8.a+8=p+y.

2
4&_}
1

Fig.9. a +y =8+34.

4
Fig. 10.a + B +y + 8 = 27.
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¢ =B+ yor¢g =21 — B —y.Again there is a unigue PSD completion of rank 2,
and as before it is not the only PSD completion.

We now summarize all of the above results in Theorem 2.

Theorem 2. LetO< «, 8,y,8 < and let

1 Ccosw ? coss
COSu 1 cosp ?

? coss 1 cosy
COsé ? cosy 1

C =

Alsq let A(x, y) be the matrix in(8) with a = cose, b = cosB, ¢ = cosy and
d = coss. Then C has a PSD completion of rargk2 if and only if at least one of
the following12 equations holds.

a=pB+y+54, 2r+a=p+y+54,
B=a+y+s, 2t+B=a+y+s, (51)
y=a+pB+34, 2t+y=a+p+3,
S=a+pB+y, 2r+é=a+B+vy,

a+pB=y+94,
at+y=8+6, (52)
a+é=p+v,

a+B8+y+8=2n.

Furthermore one of the following three mutually exclusive cases occurs.

1. If any of the equations itb1) holds then C has a unique PSD completion and its
rank is at mose.

2. If any of the six relations

() y=0a,6=5,
(i) 6 =a.y =B,
(i) p=a.6=y,

(V) a+y=m=8+45,
Ma+s=nm=8+y,
W)a+B=m=y+$
holds but none of the equations 1) holds then there are twothree or four
PSD completions of C with rank at m&turthermore there is a one-to-one cor-
respondence between these completions and the singular points of the completion
region anddetA(x, y) factors as indicated in Tabl&
3. If exactly one of the equations %2) holds but none of the equations i%1)
holds thendetA(x, y) is irreducible and C has exactly one PSD completion of



M.O. Omran, W. Barrett / Linear Algebra and its Applications 336 (2001) 131-166 163

rank at mos®. This completion necessarily corresponds to a singular point of the
completion regionwhich is not a single point.

Theorem 2 gives necessary and sufficient conditions on the paramefers, §
so thatC has a PSD completion of rank at most 2. One may only want to know
whether or not a PSD completion of rank 1 or 2 of the partial PSD malt¢ix y)
in (8) is possible, and not the nature of all such completions. This can be reduced to
just checking whether or not the entriesh, ¢, d satisfy a polynomial equation.

Observation 5. A necessary condition that(x, y), given by(8), has a PSD com-
pletion of rank at mos2 is that the ordered quadruplg:, b, ¢, d) must satisfy

a* + b+ * + d* — 2a%b? — 24%c% — 2a2d? — 2b%c? — 2b2d? — 2c%d?
+ 8abed — 4aBbed — dab3cd — Aabc3d — dabed® + 4a2b?c? + 4a%b2d?
+ 4a®c?d® + 4b%c?d? = 0. (53)

Proof. Suppose there is a poift, y) in Rsuch that the matrid (x, y) has rank 1
or 2. Then in particular we have

1 a x 1 x d
detjla 1 b|=detfx 1 c|=0. (54)
x b 1 d ¢ 1

But, (54) holds if and only if

1—a?—b?—x24+2abx =0= 1—c2—d2—x2+2c‘dx,
if and only if

x=ab+tv/(1—ad)L—-b2) =cd £/ (1 -c2)(1-d?),

and it can be shown with some algebra that one of these four equalities holds if and
only if (53) holds. O

We conjecture that (53) is also a sufficient condition so th@t, y) has a PSD
completion of rank at most 2.

8. Concluding remarks

If a PD completion of a partial PD matrik exists, then from [4] there is a unique
PD completionA,, called the determinant maximizing completion, whose determi-
nant is maximal among all PD completions Af Furthermore,A;1 has zeros in
those positions corresponding to the unspecified entrids From the elementary
cases of the PSD completion region &fx, y) that we mentioned in Section 4, it
may appear that this determinant maximizing completigroccurs at the centroid
of the PSD region. We show that this is not necessarily true.
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For example, considet(x, y) in (8) witha = b = ¢ = d = 1/+/2. According to
Table 1,

detA(x,y))=(xy+x+y—-Dx -y -1

and there are three singular points for the PSD completion region, ngtely,
(1,0) and(0, 1) (the third graph in Fig. 5 illustrates a similar case with- .5). The
PSD region is bounded above Byx) = 1, below byg(x) = (1 —x)/(1+ x) and
from the right by the liner = 1.

Let M, andM, be the moments about tlxeaxis andy-axis, respectively. Then

1 1—
My=/x(1— x)dx=2ln2—1
0 1+x

1 1—
Area:/ (1— x>dx=2—2ln2
0 1+x

By symmetry,y = x, so the centroid is
G 5) = 2In2—-1 2In2-1
Y =\222In2 2-2In2

The PSD completion region is not empty in this case, so there is a unique determi-
nant maximizing completiom . = A(xg, yo). Since defA(xg, yo) = detA(yo, xo),
we must haveg = xo. Then(A-1)13 =0, so

and

L1

/2 0
detA[(2. 3, 4]1(1. 2. 4)](x0. xo) =det| xo 5 7

ﬁ X0 1

=(o—DG§+x0-1) =0
Sincexg = 1 yields a PSD completion with determinant 0, then we must have

_ V5L

X0
So, the determinant maximizing completion

—1+5 —1++5
AC:A< szﬁ ;\/‘

)#Ai,f)-

It is of great interest to obtain information about the PSD completion region for
partial PSD matrices associated with more complex nonchordal graphs. We give one
example to illustrate how the above results can be appliedslbet the graphks ,,,
shown in Fig. 11, and let
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m+ 2
.4
3
1 2
Fig. 11. Ko .
1 ?  a13 ... ... ai |
? 1 ax@3 ... ... ay
aiz azz 1 ? . ?
A= 2 1 2
a1, ax ? ? . 1 ]

be a real partial PSD matrix of order= m + 2 whose graph iX> ,. Note that
Ko is missingk = (’5‘) + 1 edges. LetR, € R* be the PSD completion region
of A. Note also that there ag¢ — 1) 4-cycles inK> ,,, namely 12j where{i, j} C
{3,...,m+2}.

Let x be the unspecified entry in the first row and second column, and for each
{i, j} S {3, ....,m+2}, i <j, lety;; be the unspecified entry in romand column
j of A. For each such j let

1 X ay aij
X 1 ax ay
ayi a1y
aijj az; oy 1

A(x, yij) =

be the principal submatrix &, with two unspecified entries, y;;, associated with
the induced 4-cycle %2 of K2,,. Let Ry,; be the real PSD completion region of
A(x, yl'j). Then if

(xs )’341 y351 ML) yn—l,n) € RA»

then necessarily

(x, yij) € Ry,

forall {i, j} € {3,...,m+ 2}, i < j.Inotherwords, the projection @, onto the

x, yjj-plane is contained iIRA[j for 3<i < j < m; so the complicated regioR 4

can be investigated in terms of these more elementary regions, each of which is the
completion region for a 4-cycle.
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The PSD completion regioR of the matrixA(x, y) given in (8) exhibits many
interesting properties as detailed above. However, there are still a number of interest-
ing open questions concerniiy One that seems very difficult is the “inverse PSD
completion problem”: given a convex subgebf the squares is there a quadruple
(a, b, ¢, d)) such that the completion regidRof A(x, y) is K. Our work enables
us to eliminate many sets from consideration, for example kanyith 5 or more
sharp points on its boundary. HoweverKifis a given set with a smooth boundary,
it remains unclear whether or nktcan be such a completion region. To this end it
would be helpful to determine interesting characteristicR of the absence of sin-
gular points. We believe that Theorem 2 describes all occurrences of singular points
for nontrivial completion regions, but this has not been proved. A further question
of interest is whether the theory of algebraic curves can give useful information in
other instances of the PSD completion problem.
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