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Abstract

The spectra of two interacting electrons, con(ned in a quantum dot, is studied for any ratio of coulomb to con(nement
energy by using the shifted 1=N expansion method. An explanation is given to the energy-level crossings which occur in
the quantum dot spectra. The oscillation of the spin of the ground state as the magnetic (eld varies is studied. Based on
comparisons, the method shows very good agreement with very recent results produced by using WKB-approximation and
exact numerical methods. c© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Quasi-zero-dimensional systems, such as quan-
tum dots (QDs), have been the subject of intense
research in recent years, owing to the nanofabrica-
tion techniques that make possible the realization
of a system of very small dimension comparable to
the de Broglie wavelength of carriers. In such small
structures, the electrons are fully quantized into a
discrete spectrum of energy levels. The con(nement
in z-direction, which is the growth direction, is as-
sumed to be stronger than that in xy-plane, so the dots
can be viewed as two-dimensional disks. Di6erent
experimental [1–5] and theoretical [6–13] methods
have been devoted to the investigation of the energy
spectrum and correlation e6ects of the interacting
electrons con(ned in quantum dots under the e6ect
of applied magnetic (eld. In particular, the spectral
properties of the two-electron quantum dot for any

ratio of the coulomb strength to the harmonic con-
(nement recently received great attention [14–20]. In
this work, we will also study the same case using
another approach namely, the shifted 1=N expansion
method. To achieve our aim we proceed in two steps.
First, we use the shifted 1=N expansion method, as a
non-perturbative technique, to produce an analytical
energy expression for two interacting electrons con-
(ned in a quantum dot for any ratio of the coulomb
strength to the harmonic con(nement. Second, we give
an explanation of the energy-level crossings which
occur in the spectra of the quantum dot by making use
of the energy expression we have obtained.
The rest of this work is organized as follows. In

Section 2, we have presented the Hamiltonian theory
for two interacting electrons con(ned in a harmonic
QD in magnetic (eld. We have described, in Section 3,
the shifted 1=N expansion technique. Section 4 is de-
voted to results and conclusions.
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2. The Hamiltonian theory

The e6ective-mass Hamiltonian for two interacting
electrons, con(ned by a harmonic potential of charac-
teristic length l0 = (˜=m∗!0)1=2 in the xy-plane, can
be decoupled to center-of-mass and relative motion as
follows:
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For the center-of-massM =2m∗; Q=2e; P=p1+
p2 and its coordinate r̃cm = (̃r1+̃r2)=2. Similarly, for
the relative part we have reduced mass �=m∗=2;
q= e=2; p̃= (̃p1− p̃2)=2 and its coordinate r̃= r̃1+ r̃2.

The magnetic (eld B is taken to be uniform and is
applied along z-axis, perpendicular to the plane of the
interacting electrons. The relative Hamiltonian, Eq.
(2), can be written as
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with the cyclotron frequency given by !c = eB=m∗c
and the e6ective con(nement �2 =!2

0 + !2
c=4.

The Zeeman energy term Espin = g�∗
BSz, where Sz =

[(1 − (−1)m)=2] is the total spin, can be included
directly in the total Hamiltonian state where even m
quantum numbers are singlets (Sz =0) and states with
oddm are triplets (Sz =1). Quantitatively, the Zeeman
energy is very small and is not going to add a signi(-
cant contribution to the total energy of the QD spectra.
For example, the Zeeman energy is almost∼ 0:1 meV
for QD made from GaAs (g=−0:44; m∗ =0:067me)
in an applied magnetic (eld of strength 5 T. How-
ever, the oscillations of the spin make the physics of
the QD spectra more rich and thus this issue deserves
more analysis. By making the substitution

�(r)= r−1=2 (r)eim�;

we obtain
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where m=0;±1;±2; : : : is the azimuthal quantum
number. The eigenenergies for the center-of-mass
motion can be exactly obtained as

Ecm = (2Ncm + |Mcm|+ 1)� + 1=2Mcm!c;

Ncm = 0; 1; 2; : : : ; Mcm = 0;±1;±2; : : : : (5)

The problem is reduced to solving the Hamiltonian
of the relative motion, Eq. (2). By making the sub-
stitution r=

√
2lx, where l2 = (˜=m∗�), we write

Eq. (2) as
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where ! is a tuning parameter and it measures the ra-
tio of the coulomb interaction to the harmonic con-
(nement,

!=

√
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with an e6ective Bohr radius a∗ =˜2�=m∗e2.
We can adjust both the con(nement energy through

the frequency parameter !0 and the coulomb interac-
tion energy by changing the dielectric constant � of
the medium leading to their relative change in !.
Since Eq. (6) represents the problem of relative

motion con(ned in a harmonic potential coupled with
a coulomb potential, V (x)= x2 + !=x, which cannot
be solved exactly by any analytical method, it is clear
that we are going to resort to approximation methods.

3. Method of solution

The shifted 1=N expansion method, N being the
spatial dimension is a pseudoperturbative technique in
the sense that it proposes a perturbation parameter that
is not related to the coupling constant [22–26]. The
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method starts by writing the radial SchrEodinger equa-
tion, for an arbitrary cylindrical symmetric potential,
in N -dimension space, as[
− d2

dr2
+
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4r2

+
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and Fk =N +2m−a; a is a shifted parameter and Q is
a scaling constant to be determined. The shifted 1=N
expansion method consists of solving Eq. (9) in terms
of the expansion parameter 1=k. It is convenient to
shift the origin to r0 by the de(nition

y= Fk
1=2

(r − r0)=r0 (11)

and to expand Eq. (9) about y=0 in powers of y. We
obtain a one-dimensional SchrEodinger equation with
anharmonic oscillator potential as follows:[
− d2
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1
4
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]
 (y)= �nr ;m (y);
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where V (y) is the perturbation potential,

V (y) = g1=2(�1y + �3y3) + g(�2y2 + �4y4)

+ g3=2('1y + '3y3 + '5y5)

+ g2('2y2 + '4y4 + '6y6) (13)

and g=1= Fk.
The eigenenergies �nr ;m for anharmonic oscillator

can be analytically calculated in terms of its para-
meters using the perturbation techniques. Now, cutting
the series obtained in Eq. (9) (after 1= Fk expansion) to
the same order in y and Fk as Eq. (12), we can com-
pare both equations term by term to identify all the
parameters: anharmonic frequency F!, energy eigen-
values �nr ;m and the shift parameter a, in terms of Fk; r0
and the potential derivatives. The harmonic frequency
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and the energy eigenvalues in powers of 1= Fk (up to
third order) read as
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(1 and (2 are parameters expressed in terms ofQ; F!; nr

and given in the appendix. The shift parameter a is
(xed by making the second contribution term to the
energy series vanish, namely,
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which gives

a=2− (2nr + 1) F!: (17)

This choice was physically motivated by the re-
quirement that the eigenenergies produced by 1= Fk ex-
pansion method agree with the analytic results for the
harmonic oscillator and coulomb potential [23].

Q is a scaling constant which is introduced in
order to get useful results from 1= Fk expansion in large
Fk limit. Since the angular momentum barrier term
goes like Fk

2
at large Fk (see Eq. (9)), it is essential

to properly de(ne the potential. For this reason, Q is
introduced with the purpose of rescaling the potential
in Fk

2
, that is the order of magnitude of the centrifugal

barrier to yield an e6ective potential Ve6 which does
not vary with Fk at large values of Fk: Q is determined
by making the e6ective potential,
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having a minimum at r0(
dVe6
dr |r0 = 0), where the sys-

tem has well-de(ned bound states. The roots r0 are
determined, for a particular quantum state (nr; m) and
con(ning frequency !, through the following relation:

[2r30V
′(r0)]1=2 =Q1=2 = Fk =(2 + 2m− a): (19)

After obtaining the roots r0 through Eqs. (17) and
(19), the task of computing the energy from Eq. (15)
is relatively easy. nr is the radial quantum number
related to the principle (n) quantum number by the
relation nr = n− |m| − 1.
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4. Results and conclusions

Our results for QDs of two interacting electrons
are presented in Figs. 1 and 2 and Tables 1–3. Fig. 1
shows the energy spectrum of two interacting elec-
trons con(ned in QD produced with 1=N expansion
technique for nr =0 and m=0;−1;−2;−3;−4 and
for (nite electron–electron interaction, !=3, against
the ratio !c=!0. It is obvious from the (gure that the
ground state shifts to the states with higher angular
momentum as the magnetic (eld increases. The spin
also changes to keep the wave function of the quan-
tum electron state totally antisymmetric in accordance
with the Pauli exclusion principle. For example, the
(rst level crossing occurs at !c=!0 ≈ 0:9. At this
crossing, the ground state of the QD changes from
m=0; Sz =0 tom=−1 and Sz =1. The second cross-
ing occurs at !c=!0 ≈ 1:5 and the state (m; Sz) quan-
tum numbers changes from (−1; 1) to (−1; 0). These
spin (Sz) changes, from Sz =0 to 1 and from 1 to 0,
which occur in the QD spectra of interacting electrons
are known as spin oscillations. Thus, the spin of the
quantum dot states oscillates between singlet (Sz =0)
and triplet (Sz =1) states as the applied magnetic (eld
B increases. Our numerical results are in very good
agreement with the ones of Ref. [14] produced very
recently with WKB-approximation method. The level
crossings which occur in the QD spectra are due to
the dependence of the electron–electron interaction on
the azimuthal quantum number m; Ve–e(m), and can
be physically understood from the analytical expres-
sion we obtained, Eq. (15), namely V (r0)= !=r0 + r20 .
For this purpose we have listed, in Table 1, the roots
r0 which correspond to di6erent quantum states |0; m〉
and for particular (nite interaction strength !=1,
say. The table shows the following behavior: as the
azimuthal quantum number m increases, the roots
r0 increases and thus the electron–electron coulomb
energy, Ve–e(m); (∼ 1=r0(m)) decreases leading to
a reduction in the energy of the state. These results
have been obtained for electron–electron interaction
energy and are in quantitative agreement with the
one obtained by Zhu et al. [15]. In this work [15],
they have used the perturbation theory to calculate
the analytic expression for the interaction energy ma-
trix element, namely, Er(0; m)= 〈�0m|2=r|�0m〉. The
expression gives the dependence of the coulomb en-
ergy, Er(0; m) on the quantum number m and clearly

Fig. 1. The energy spectrum of a two interacting electrons, con-
(ned in a quantum dot, calculated by 1=N expansion method for
quantum state |0; m〉; m=0;−1;−2;−3;−4 and for (nite elec-
tron–electron interaction parameter !=3 (—— singlet (Sz =0)
and − − − triplet (Sz =1) states).

Fig. 2. The energies of the ground state |0; 0〉 as function of !
calculated by: 1=N (• • • • •), variational (− − −− ), WKB
(◦ ◦ ◦ ◦ ◦), perturbation (� � � � �) and exact numerical
( ) methods.

shows that this interaction coulomb energy (for
(xed � and nodeless states nr =0) decreases as the
azimuthal quantum number m increases, which again
supports our results. On the other hand, the con(ne-
ment energy (∼r20) is enhanced. The reduction in the
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Table 1
The values of the roots r0 for quantum dots states with di6erent
angular momentum m=0;−1;−2; : : : ;−9, calculated at !=1:0

|n; m〉 r0

|0; 0〉 1.176
|0;−1〉 1.495
|0;−2〉 1.782
|0;−3〉 2.203
|0;−4〉 2.264
|0;−5〉 2.472
|0;−6〉 2.665
|0;−7〉 2.845
|0;−8〉 3.015
|0;−9〉 3.175

Table 2
The spectra of two interacting electrons con(ned in a quantum
dot calculated by di6erent methods [16]; exact numerical (shoot-
ing) method, 1=N expansion method and WKB approximation for
di6erent quantum states, |n; m〉a

|n; m〉 Exact 1=N WKB

!=10:0
|0; 0〉 10.4816 10.4398 10.5220
|0;−1〉 10.8495 10.8341 10.8797
|0;−2〉 11.7903 11.7860 11.8078
|0;−3〉 13.0720 13.0717 13.0823
|0;−4〉 14.5546 14.5544 14.5611
|0;−5〉 16.1628 16.1629 16.1672
|0;−6〉 17.8543 17.8541 17.8573
|0;−7〉 19.6037 19.6037 19.6059
|0;−8〉 21.3954 21.3954 21.5342
|0;−9〉 23.2188 23.2188 23.2200

!=1:0
|0; 0〉 3.4952 3.4234 3.6898
|0;−1〉 4.8553 4.8524 4.8720
|0;−2〉 6.6538 6.6535 6.6583
|0;−3〉 8.5485 8.5484 8.5503
|0;−4〉 10.4814 10.4814 10.4824
|0;−5〉 12.4340 12.4340 12.4346
|0;−6〉 14.3983 14.3983 14.3986
|0;−7〉 16.3701 16.3701 16.3704
|0;−8〉 18.3472 18.3472 18.3473
|0;−9〉 20.3280 20.3280 20.3282

aEnergies are expressed in units of ˜!0=2 for !=10 and 1.

e–e interaction energy does not consume completely
the enhancement energy. This competition between
e–e interaction energy and con(nement energy leads
to a system with di6erent ground states. In addition
to this agreement with Refs. [14,15], we numeri-
cally test our results against the ones produced by

Table 3
The energies of the ground state |0; 0〉, expressed in units of ˜!0=2,
for di6erent values of parameter ! produced by 1=N expansion
method

! �0;0

0.5 2.7654
1.0 3.4234
1.5 4.0088
2.0 4.5421
2.5 5.0360
3.0 5.4998
3.5 5.9361
4.0 6.3544
4.5 6.7527
5.0 7.1343

WKB-approximation also in Ref. [16]. For !=1 and
10, we compare, in Table 2, the eigenenergy spectrum
produced by 1=N expansion technique against the nu-
merical results produced by WKB-approximation and
exact ones. The table clearly shows excellent agree-
ment between both works. To test further the accuracy
of our method, for di6erent ranges of parameter !,
against various methods used to study the same case,
we plot, in Fig. 2, the energies in units of (˜!0=2) for
the ground stage nr = n; m=0 against !. Fig. 2 shows
that our results (• • •) are in very good agreement
with WKB-double parabola (◦ ◦ ◦) and the exact
numerical (♦♦♦) results. The energies produced by
1=N method for a large range of ! are also given in
Table 3. On the other hand, the results produced by
perturbation theory and variational methods show a
signi(cant deviation from the ones produced by 1=N ,
WKB and exact methods. This comparison indicates
that the perturbation theory and variational methods
are not reliable methods for all ranges of parameter !.
In conclusion, we have studied the spectral proper-

ties of two interacting electrons con(ned in a QD us-
ing the shifted 1=N expansion technique. The method
provides us with an analytical energy expression that
we use to understand the energy-level crossing and
the transitions in the ground state of the interacting
system. In addition to this, the method gives us very
accurate energy spectra. Based on comparisons with
di6erent methods, WKB-approximation, perturbation,
variational method and exact method, the shifted 1=N
expansion technique gives accurate results for any de-
gree of the coulomb to con(nement ratio.
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Appendix

The parameters (1 and (2, appearing in Eq. (15) are
given as follows:

(1 = [(1 + 2nr)e2 + 3(1 + 2nr + 2n2r )e4]

− F!−1[e21 + 6(1 + 2nr)e1e3

+ (11 + 30nr + 30n2r )e
2
3]; (A.1)

(2 = (1 + 2nr)d2 + 3(1 + 2nr + 2n2r )d4

+ 5(3 + 8nr + 6n2r + 4n3r )d6

− F!−1[(1 + 2nr)e22 + 12(1 + 2nr + 2n2r )e2e4

+ 2e1d1 + 2(21 + 59nr + 51n2r + 34n3r )e
2
4

+ 6(1 + 2nr)e1d3 + 30(1 + 2nr + 2n2r )e1d5

+ 6(1 + 2nr)e3d1 + 2(11 + 30nr + 30n2r )e3d3

+ 10(13 + 40nr + 42n2r + 28n3r )e3d5]

+ F!−2[4e21e2 + 36(1 + 2nr)e1e2e3

+ 8(11 + 30nr + 30n2r )e2e
2
3 + 24(1 + nr)e21e4

+ 8(31 + 78nr + 78n2r )e1e3e4

+ 12(57 + 189nr + 225n2r + 150n3r )e
2
3e4]

− F!−3[8e31e3 + 108(1 + 2nr)e21e
2
3

+ 48(11 + 30nr + 30n2r )e1e
3
3

+ 30(31 + 109nr + 141n2r + 94n3r )e
4
3] (A.2)

with

ej = �j= F!j=2 and di = 'i= F!j=2 (A.3)

where

j=1; 2; 3; 4; i=1; 2; 3; 4; 5; 6:

The de(nitions of �j and 'i quantities are

�1 = (2− a); �2 =− 3(2− a)=2; (A.4)

�3 =− 1 + r50V
(3)(r0)=6Q;

�4 = 5=4 + r60V
(4)(r0)=24Q; (A.5)

'1 =− (1− a)(3− a)=2;

'2 = 3(1− a)(3− a)=4; (A.6)

'3 = 2(2− a); '4 =− 5(2− a)=2; (A.7)

'5 =− 3=2 + r70V
(5)(r0)=120Q;

'6 = 7=4 + r80V
(6)(r0)=720Q: (A.8)
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