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Abstract

This study presents a comparative analysis for three techniques in
analyzing the hydraulics of pressurized irrigation systems: Linear Theory,
Newton Raphson, and Iterative Distal Outlet. It was found that the iterative
distal outlet method uses less computer time and memory than Newton
Raphson and Linear theory methods in analyzing the hydraulics of
pressurized irrigation systems. The study shows that using an approximate
initial solution for such systems, which can be obtained using Wu-Gitlin
approach, will significantly improve the convergence rate of this iterative
method as well as the other methods.

Introduction

Pressurized irrigation is used through trickle (drip) and sprinkler irrigation
systems. Both systems utilize closed conduits or pipelines to transport water
from the irrigation supply to individual outlets. Those outlets are emitters in
trickle irrigation and sprinklers in sprinkler irrigation

Analyzing the hydraulics of pressurized irrigation systems is necessary to
estimate the pressure heads and discharge of individual outlets. The
hydraulic and topographic situation of the system causes variations in
pressure heads at each outlet. Therefore, variations in discharge are
observed at individual outlets (excluding pressure compensating emitters
where discharge is pressure independent). As the pressure variation
increases, the uniformity of the system is reduced (Solomon, 1984).
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Reducing the uniformity reduces the application efficiency at the farm
(Mizyed; 1988) and thus increases water losses. To conserve water at the
farm level, outlet discharge variations should be minimized to get a more
uniform water application.

Evaluating the uniformity of any pressurized irrigation system is either
done during design or operation In the design stage, pressurized irrigation
systems should be evaluated theoretically through evaluating their hydraulic
performance to determine their uniformity. This evaluation is done to study
the possibility of improving the design and asses the suggested design in an
attempt to reach a better performance of the system. During operation, the
system should be analyzed to evaluate its performance. As it is not always
possible to measure outlet discharge in the field, analyzing the hydraulics of
the irrigation system is essential in evaluating its uniformity (Mizyed and
Kruse, 1989).

This study discusses and compares the performance of three different
approaches in analyzing the hydraulics of pressurized irrigation systems.
Performance parameters included memory requirements, number of
iterations, computer time needed for analysis, and effects of improved initial
solutions on the performance parameters for these iterative methods.

The importance of this study is related to the wide use of pressurized
irrigation systems in the region. Most irrigated agriculture in the West Bank
and Gaza is done through pressurized irrigation systems (Haddad and
Mizyed, 1993). Also, more than 70% of fresh water is used in agriculture in
the area. As water resources are limited, water conservation practices are
highly needed especially in the agricultural sector. Thus, evaluating the
hydraulics of irrigation systems will help in improving the design of irrigation
systems and increasing control of irrigation water to achieve better
application efficiencies and thus conserve water. Therefore, efficient
methods for analyzing the hydraulics of such systems are necessary.

Hydraulics of Pressurized Irrigation Systems

Pressurized irrigation systems are usually a special type of pipe network
known as a tree or branch type. Analyzing such systems can be done by
several methods. These methods are based on solving energy and continuity
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equations for flow (Jeppson, 1976). These equations are usually written
using two standard forms which are node and loop equations. As there are
no loops in tree pipe networks (we usually have dead ends) the only form of
equation applicable here is node equations.

Node equations are equations of continuity at each node, in the form of
pressure heads at different nodes which are the unknowns. Therefore, the
number of unknowns should be equal to the number of nodes with unknown
heads in the system which is equal to the number of continuity equations.
The continuity equation at each node is based on the principle of mass
balance which means the total inflow rate into the node should be equal to
the total outflow from the node. Inflow rates are expressed in terms of
pressure heads at nodes in nonlinear relations. Thus, the result will be a
system of nonlinear equations.

There is no direct general method to solve such systems of nonlinear
equations. However, there are different methods available to solve such
systems using trial and error. In all these methods, an initial solution is
assumed and then a better solution is obtained. The process continues until
the right solution is converged. The difference between these methods is
usually related to how the current solution is improved. Thus, the
convergence rates of these methods vary.

General Node equations

To illustrate the continuity equations, let us consider a pressurized
irrigation system with 3 laterals and 2 outlets per lateral as shown in Figure
1.
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Figure 1: Typical pressurized irrigation system

In the above system, point "0" is the head of the system where a certain
pressure head is applied. The vertical line (0 1 4 7) is manifold line where
water is distributed to the laterals. Circles with the numbers 2, 3, 5, 6, 8, and
9 inside them shown in Figure 1 are outlets where water is discharged to the
plant. The outlet discharge is given by (Keller and Karmeli, 1974):

q = K( H ; -EL ; t

Where:	 qi: Outlet discharge rate at outlet j,

Hj: Hydraulic head at outlet j,

EL;: Elevation of ground at outlet j,

K and X: Outlet constants determined experimentally.
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Flow rate in any pipe is taken from friction head loss in the pipe which is
given by Hazen Williams formula:

= C ; * 0 1; 85 	(2)

Where: Q; : Flow rate in pipe number j,

hf: Head loss in pipe number j,

Pipe coefficient given by:  

1.21* le * L, 
C,

C'111471;85*
(3)

Where:	 Lj: length of pipe j in meters,

Di : Diameter of pipe j in mm,

CHWi: Hazen-Williams coefficient for pipe j.

To determine flow rate in a pipe from head loss along that pipe, Hazen-
Williams can be written as:

hi, Q, ( 
(-f

t4'
(4)

The head loss along the pipe can be written as the difference in head
between the two nodes connected by the pipe. Considering nodes 1 and 2
connected by pipe #2 in Figure 1, the following equation gives flow rate in
pipe #2:

Q2- (
111 - H2

 )
054

C2

Applying continuity equation to a node located on the manifold line such
as # 4 in Figure 1, results:

0, = Q 5 ± 0 7 	(6)

(5)



(Hi-H4

 /

las ,/ (114 — HS )0.54

C4 	 Cs
(7)

114-11-'
 )

0.54

C7
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Or,

Applying continuity equation to a node located on a lateral line (outlet)
such as #5 results in:

Qs=Q6 -rq5

(

H4-H5)
 )'

54 —(H5-H6
 )

6.54 
+K(H5-EL5)

x 	 (8)
s	 C6

From the above equations, a set of simultaneous nonlinear equations can
be formulated. Thus, solving the hydraulics of a pressurized irrigation
system requires solving such a set of nonlinear equations. The following are
three iterative methods for solving the hydraulics of pressurized irrigation
systems. These are linear theory, Newton-Raphson and the iterative distal
outlet methods.

Linear Theory method

Linear theory is based on linearizing the above set of nonlinear equations
(Jeppson, 1976). Then, the set of resulting simultaneous linear equations
will be solved using matrix analysis. The resulting matrix is a symmetric
banded matrix which can be solved using its symmetry and banded
characteristics to minimize computer time and memory (Bralts and Segerlind,
1985). The number of rows in the resulting matrix will be equal to the
number of nodes in the system. The band width of the matrix is equal to the
number of outlets per lateral plus two. Thus, a system with 30 laterals and
20 outlets in each lateral results in a matrix with 630 (30*21) rows and a
band width of 22. Thus, a symmetric banded matrix with a size of 630X22
has to be constructed to solve such a system. However, if this property is
not utilized, the size of the resulting matrix will be 630X630 which will
require much more memory and computer time for processing. Therefore,
solving large irrigation units might cause computer memory problems when
using this method.
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This method was used for the analysis and design of microirrigation
laterals (Kang and Nishiyama, 1996a) where the band width of the resulting
matrix is usually 2. To avoid running into computer memory problems
resulting from large matrices, it is possible to approximate lateral lines into
equivalent outlets and manifold line into a lateral (Kang and Nishiyama,
1996b) This approximation reduces the size of matrices significantly. In
this study, all outlets and laterals in the system are considered in solving its
hydraulics .

To explain how nonlinear equations are linearized, consider node #4
shown in Figure 1 where:

W. 4 =	 H 4 = C4Q4185	 (9)

In the above equation, Q4 1.85 could be taken as Q40 85 *Q4, where Q40 is
the previous estimate of discharge in pipe #4. At convergence both the
current estimate of discharge (Q) and the previous estimate of discharge in
any pipe (Q 0 ) are nearly equal (the difference is less than acceptable error) in
all pipes of the system. Therefore, the flow rate in pipe #4 is given by:

111- H4 
0 - (10)4	 0 8)

C Q 0

Applying continuity equation at node #4 as shown in eq. 7 and linearizing
results:

-A i Hi A4 H4 - As H, - A7H- =	 (11)

Where:

AI—	 0 85
C4 f--) 4o

As	 O.85
C s 

(A So

(12)

(13)
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1
A7 	 085

A4 = Al AS + A7

Applying continuity equation to a node located on a lateral line such as
node #5 (eq. 8) and linearizing results in:

A4(H4-115)- A6( H H 6) + IC( I7 I 5 7 EL5 t(H EL)
	

(16)

Where HSO is a previous estimate of head at node 5. The above equation
is reduced to:

"'A4 114 + (A4 + A6 +K(HSO - ELS)X1)115 - A6116

- K * EL5 * ( H 50- EL5)X

	 (17)

From the above equations, a system of nonlinear equations has been
turned into a system of linear equations with a vector of unknowns H. The
resulting system will be in the form of A H = B, in which A is a symmetric
banded matrix. Each time the system is solved, matrix A is updated and the
system is solved again until convergence. Convergence occurs when the
maximum difference between the new vector H and the last calculated value
for H is less than a certain specified value or allowable error (this was taken
as 5 mm in the computer simulations for this study).

Newton Raphson Method

The set of nonlinear node, equations is written in the form of F(H)=0
through moving all non zero terms to the left side of the equation. The
solution is obtained using Newton Raphson technique utilizing the formula:

11m +1 = Hm - H m )/F i( H m )	 (18)

The above formula is written as:

H P"' H m -	 Hm )
	

(19)
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Where D is the Jacobian matrix consisting of the derivative elements or,

'a F1 	aF, .••.`

aH2

D -

aF2 (20)   

I

The iterative formula could be written as:

lim+1=11m-Z	 (21)

Where:

Z=D-1*F(H"')	
(22)

D*Z-

Applying the above iterative method to a node located on the manifold
line such as node #4, results in (see eq. 7):

F 4(1-1) --- 	
I- 4 )0.54 4_ (II 4 - 5 )o.54 (H 4 H7 )0.54

C4	 C5 	 C7
	 (23)

while at a node located on a lateral line ( node 5 for example ), gives ( see
eq. 8 ):

5(H)	 (H 4	 5 ) 0.54 + (H - .11 6 , 0.54
)	 5- ELS t

C5	 C 6

(24)

Taking the derivatives of eq. 24 gives:

3H4 	 C5 	 C5

a F5 _ 0.54 (I I 4 - H 5 ) -0.46	 (25)
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aF5 	0-54 (115-116 )0.46

a116	 C6	 C6

OF 5 _ _aF5 6F5 	X*(H5-EL5/a H , 	 aH6

The resulting Jacobian matrix will be a banded symmetric matrix which is
utilized in solving the hydraulics of irrigation systems to minimize computer
memory and time. The size of matrix needed will be equivalent to that
needed using linear theory method.

Iterative Distal Outlet Method

Distal outlet method is used to estimate pressure and discharge
distribution along a lateral or a manifold when pressure or discharge from the
last distal outlet is known (Walker, 1980). However, if pressure is known at
the inlet point (first point of a lateral or a manifold) the procedure has to be
iterative. Therefore, solving a system as shown in Figure 1 where head at
inlet point "0" is known and heads at all other nodes are unknowns will be as
follows:

Start with an initial assumption for heads at all outlets in the system (could
be taken as Ho or less) .

2. From the head estimates above, discharge from each outlet is estimated
using equation 1.

3. Using continuity principle and starting from the distal ends of laterals (the
last outlet) discharge is estimated in each pipe segment or:

Q9 = q9, Q8 = Q9 + q8, Q7 = Q8

Q6 = C16, Q5 = Q6 + q5, Q4 = Q5 + Q7, and

Q3 q3, Q2 = Q3 + q2, Q1 = Q2 + Q..

4. From discharge and pipe characteristics, friction head losses are estimated
in each pipe using equation 2.

(26)

(27)
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5. Starting from inlet point "0", head at each outlet is estimated by
subtracting friction losses from head at previous outlet, or:

H i = Ho -	 H2 = Hi - hf2, H3 = H2 - hf3 ,

H4 = H I - hf4 , H5 = H4 - hf5, H6 = H5 - hf6 , and

H7 = H4 - hf7, H8 = H7 - hf8, H9 = H8 - hf9 .

6. The new estimates of heads of step 5 are used for the following iteration
and steps 3 to 5 are repeated until convergence (the maximum difference
between heads estimated in step 5 and last estimates of heads is below a
certain acceptable error value which was taken as 5 mm in this study).

It was found that it is possible in some cases to overshoot the answer or
oscillate around it especially in poorly designed systems and poor initial
solutions. Therefore, to improve the convergence of this method, it is
recommended to use the average value of the pervious two iterations in the
following iteration (instead of utilizing the new estimate for the next
iteration) especially in the first few iterations. When convergence is reached,
the last two iterations give equal estimates of heads and discharge (within
allowable error).

Computer Simulation

The above three methods were used to formulate three computer
programs (one for each method). These programs were compiled using
microsoft FORTRAN compiler version 5.10. Then these programs were
tested to solve several hypothetical examples of pressurized irrigation
systems. Although these examples were hypothetical, they were taken from
common practices and systems that farmers use in the West Bank.
Characteristics of pipes and outlets were taken from the properties of
irrigation systems in the field. Only dimensions of the systems were
assumed. The assumptions for dimensions were made in a way to show most
common sizes of irrigation systems in the field, starting from the smallest to
the largest. Then, the three programs were used to analyze the hydraulics of
these systems using the personal computer (main processor 80386DX-40
mhz with an 83D87 math processor). All programs used the same initial
solutions for each system. Then computer time and memory were compared
for the three methods.



12	 N. Mizyed An-Najah Univ. J. Res., Vol. 11, (1997) 1-21

Although changing computer speed and hardware affected computer time
for the three methods, however, there was a trend for the three methods
when they were compared with each other. The trend was in the pattern for
the computer time and memory needed according to the size of the system
and the method used in the analysis. The trend was clearly shown in the 14
systems shown in Table 1 (which were not the only systems analyzed but
show a general trend which will be discussed later).

Table 1:
General description of the 14 irrigation systems used to show the

trend of the performance of the different methods in
analyzing the hydraulics of the systems.

System # Number of
laterals

Number of

outlets /lateral
lOtal outlets Total

nodes
Inlet flow
rate (I/s)

1 15 15 225 240 1.486
2 15 20 300 315 1.96
3 15 25 375 390 2.41
4 15 30 450 465 2.82
5 15 35 525 540 3.185

6 20 15 300 320 1.97
7 20 20 400 420 2.60
8 20 25 500 520 3.184
9 20 30 600 620 3.72
10 25 15 375 400 2.46

11 25 20 500 525 3.22
12 25 25 625 650 3.93
13 30 15 450 480 2.93
14 30 20 600 630 3.83

Diameter of laterals = 14 mm Flow rate was found from the three
Diameter of manifold= 50 mm methods which converged to the
Spacing between laterals = 2 m same	 flow	 rate	 for each system
Spacing between outlets = 2 m regardless to initial solution.
K = 0.0015 (Umx)
X = 0.5
Inlet pressure head = 20 m

Number of nodes is the number of
unknown heads in the system.

Land slope 0 both directions
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Results of Computer Simulation

The three methods succeeded in converging to the same results for each
system used. It was found that Newton Raphson method used the minimum
number of iterations while the iterative distal outlet method used the
maximum number of iterations. However, iterative distal outlet method used
minimum time while linear theory method used the maximum computer time.
This result could be attributed to the fact that Newton Raphson method is a
efficient technique which usually converges fast to the solution. However, it
requires evaluating the first derivative at each node with respect to each
unknown (the Jacobian matrix shown in equation 20). The result is a large
matrix which requires a significant computer time to evaluate its inverse.
Linear theory method required evaluating the inverse and multiplying large
matrices which requires a significant amount of computer time. The iterative
distal outlet method is an iterative method which does not utilize a lot of
theory in deciding how to go to the next solution. Thus, it needed the
maximum number of iterations. However, this method does not require
finding the inverse of large matrices. Thus, computer time needed for each
iteration is minimal. Therefore, the net time needed for such method is lower
than other methods.

With computer memory, iterative distal outlet method required the least
amount of memory. This method required memory to save hydraulic head,
flow rates, pipe characteristics and physical characteristics of the system.
The maximum matrix needed for this is usually a row matrix with a size
equal to the number of nodes in the system. Newton Raphson and Linear
Theory methods required large memory to store additional matrices. In
addition to the characteristics of the system, nodal heads, nodal discharge
and pipe flow rates needed in iterative distal outlet, the Jacobian matrix was
needed in Newton Raphson method. In linear theory method, a linearized
matrix A which is equal in size to the Jacobian matrix was needed. These
matrices were symmetric and banded which reduced their sizes. The sizes of
these matrices were still large even after utilizing their symmetry and sparse
characteristics. These matrices had rows equal to the number of nodes in the
system and band widths equal to the number of outlets per lateral plus two.
Thus, a system with 650 nodes and 25 outlets per lateral required a matrix of
size 650X27, or a matrix with 17550 elements. Thus, the biggest setback for
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Newton Raphson and Linear theory methods in analyzing the hydraulics of
pressurized irrigation systems is the size of memory needed. This problem is
high especially in drip irrigation if we want an exact solution considering all
outlets in the system. Memory requirements restrict the use of linear and
Newton Raphson methods when large irrigation systems with thousands of
laterals are to be analyzed. Such systems require approximation by reducing
the number of outlets in them to be solved using linear and Newton Raphson
methods. However, no approximation for such systems is needed when
iterative distal method is used as long as vectors of sizes equal to the number
of outlets could be fit in the computer memory.

Table 2 illustrates the above results, showing number of iterations,
computer time and memory needed for the three methods when applied to
the 14 systems mentioned above. Table 2 clearly shows that the number of
iterations needed in analysis was minimum for Newton Raphson technique
and maximum for iterative distal method. However, the time needed for
iterative distal outlet method was minimum and was maximum for linear
theory method. Time needed by linear theory was always more than that
needed by iterative distal outlet and Newton Raphson methods.
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Table 2:
Results of Hydraulic analysis for the 14 systems using an arbitrary

initial solution for the three methods of analysis.

Computer Time Number of iterations Size of Matrix

System Linear Newton Distal Linear Newton Distal Linear Distal
&

Newton
1 6.0 5.2 1.5 10 8 25 4080 240
2 12.5 9.8 1.9 10 8 25 6930 315
3 19.0 17.0 2.1 9 8 24 10530 390
4 37.0 27.0 2.5 11 8 24 14880 465
5 60.0 40.6 2.7 12 8 23 19980 540

6 9.2 10.3 2.4 11 12 31 5440 320
7 15.7 13.2 2.8 10 8 30 9240 420
8 24.8 22.8 3.1 9 8 27 14040 520
9 48.8 27.3 3.8 11 6 29 19840 620

10 11.2 8.5 3.3 11 8 36 6800 400
11 20.3 12.4 3.6 10 6 31 11550 525
12 31.3 21.4 4.7 9 6 34 17550 650

13 14.0 10.3 3.7 11 8 35 8160 480
14 24.0 14.9 6.6 10 6 49 13860 630
Avg. 23.8 17.2 3.2	 , 10.2 7.7 30.1 _

Effect of Initial Solution

To study the effect of a better initial solution on the time needed for the
three methods, an approximate initial solution was estimated for each system.
This solution was taken using Wu-Gitlin approach (Wu and Gitlin, 1975)
which gives an approximate solution assuming uniform flow along lateral
lines and exponential pressure head distribution. Initial solutions using Wu-
Gitlin approach were estimated for each system in the simulation and then
each system was solved using the three methods. The results for the 14
systems are shown in Table 3

•
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Table 3 shows the effect of improving the initial solution on computer
time and number of iterations for the three methods. As expected, an
improved initial solution increases convergence speed for the three methods.
Thus, computer time (in Table 3, the time needed for estimating the initial
solution was included in total computer time) needed to analyze each system
reduced as we improved the initial solution. However, the sensitivity of
Newton Raphson and Linear theory methods was less than that for iterative
distal outlet method. The time needed for distal outlet method reduced
significantly when the initial solution was improved. From Table 3, we can
also see the effect of improving the initial solution on the number of
iterations needed by each method. The number of iterations reduced
significantly for the three methods. However, the reduction in number of
iterations for distal method was much more than the reduction for other
methods (Newton-Raphson and linear theory methods). As a result of
improving initial solution, the number of iterations needed by distal outlet
method became competitive to that needed by Newton Raphson method .

Thus, improving initial solution made the distal outlet method superior to
Newton-Raphson and Linear theory methods in terms of computer time, and
similar in terms of number of iterations. Iterative distal method is always
superior to the other two methods in terms of computer memory
requirements.
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Table 3:
Results of Hydraulic analysis for the 14 systems starting with

approximate initial solutions (obtained using Wu-Gitlin method)
for the three methods of analysis.

System Computer Time Number of iterations
Linear Newton Distal Linear Newton Distal

1 5.8 4.7 0.2 5 3 3
2 9.7 6.5 0.3 6 3 3
3 1 3.1 8.3 0.4 5 3 4
4 26.1 12.2 0.3 7 3 3
5 47.6 17.5 0.7 9 3 5

6 6.4 4.3 0.3 5 3 3
7 9.9 6.8 0.5 5 3 5
8 16.0 10.9 0.5 5 3 4
9 43.4 15.5 0.6 9 3 4

10 7.9 5.2 0.4 5 3 5
11 12.1 8.4 0.6 5 3 5
12 24.2 12.6 0.4 6 3 3

13 8.2 6.3 0.5 5 3 5
14 14.8 9.4 0.7 5 3 5

Average 1 7.5 9.2 0.5 5.9 3.0 4.0

Considering the type of initial solution used in the solution, we found that
in general any initial solution could be assumed for iterative distal outlet
(considering only possible values of pressure heads). The better the initial
solution, the better is the convergence rate. In linear theory and Newton
Raphson, we cannot assume equal pressure heads in the system as these
heads will indicate zero flows in pipes and thus problems with division by
zero. Other than that, any initial solution could be assumed.

•
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Conclusions

It was found through analyzing the hydraulics of many pressurized
irrigation systems that iterative distal outlet method requires less computer
time, less computer memory and less mathematics compared with linear
theory and Newton Raphson methods starting from the same initial solution.
Thus, it is recommended to use iterative distal outlet method in analyzing
pressurized irrigation systems. An approximate initial solution improves the
convergence rate of this method as well as the other methods. It was shown
in this study that Wu-Gitlin approach could be used to estimate an initial
approximate solution. Although using fast computers reduces the time
needed by any method, computer memory remains a constraint especially in
large irrigation systems. As the iterative distal method requires minimum
memory, it is suitable for use in analyzing such large systems to reach exact
solutions.
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Notations

qi:	 Outlet discharge rate at outlet j

Hi :	 Hydraulic head at outlet j

EL; :	 Elevation of ground at outlet j

K and X:	 Outlet constants determined experimentally

Qi	 Flow rate in pipe number j

hfj :	 Head loss in pipe number j

Ci :	 Pipe coefficient

Li :	 Length of pipe j in meters

Di :	 Diameter of pipe j in mm

CHVVi :	 Hazen-Williams coefficient for pipe j

Q0:	 Previous estimate of discharge in pipe #j
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