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Abstract. A derivation of the specific electrostatic energy loss for two interacting capacitors
is given. The connecting wires are assumed to be superconducting. The method of derivation is
based purely on the Poynting vector involved in the process without any reference to the nature of
the mechanism that may be involved in achieving a final equilibrium state.

1. Introduction

We consider one of the best known examples in introductory physics textbooks which every
physicist learns about in his/her first year undergraduate course, namely, that of two interacting
capacitors. A capacitor is charged by a power source, which is then removed. The charged
capacitor is then connected to an uncharged capacitor. This system will attain a final
equilibrium state, which is determined by the conservation of charge and the requirement
for a common final potential difference across the two capacitors. The calculation of the initial
and the final electrostatic energies of the system has appeared in standard introductory physics
textbooks [1, 2]. The result shows that a specific fraction of the original system energy has been
dissipated, where this fraction depends on the two capacitance values. The question which
usually troubles the students is: where does the loss in the electrostatic energy go? The usual
simple answer to this is that it goes to heat energy regardless of any resistance in the circuit.
However, a more troublesome question is that of how to calculate the energy loss without, of
course, subtracting the initial energy from the final one. When one takes stock and starts to
strive for a better understanding of the problem, one immediately realizes the need for sound
answers to the above question. The present authors have felt themselves compelled to shed
some light on the physics involved in this problem.

We stress the fact that the loss in the electrostatic energy is a prerequisite for obtaining a
final equilibrium state, i.e. a final common potential for the two capacitors. The reader must
realize this fact since a final equilibrium state will never be achieved from a transient solution
without the action of a damping mechanism. The energy loss is the same regardless of the
nature of the damping mechanism which need not necessarily be a circuit resistance, R. That
is why one always obtains the energy loss even in the limit as R is chosen arbitrarily close to
zero [3]. That is also why the present authors disagree with the usual explanation given for
the energy loss as Joule heating.

The purpose of this paper is to present a derivation of the energy loss in the two-capacitor
problem without any reference to the nature of the damping mechanism involved in the process.
Our derivation is straightforward and based purely on the Poynting theorem in electrodynamics.
In the methods used here we propose a model which consists of a parallel-plate capacitor with a
circular geometry, where the connectors are superconducting wires with cylindrical symmetry.
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In section 2, we first consider a simpler but illuminating problem that consists of a capacitor
being charged by a power supply, and we derive the energy loss. In section 3 we give a detailed
derivation of the energy loss in the two-capacitor problem. Section 4 is devoted to results and
discussion.

2. Charging a capacitor by a power supply

Consider a parallel-plate capacitor with capacitance C, whose plates are circular of radius a
and separated by a distance d . This capacitor is connected to a power supply of electromotive
force V0 using superconducting cylindrical wires of length L and radius R. In the charging
process, the charge on the capacitor is instantaneously built to its final value Q, since the wires
are assumed to be superconductors. The charge on the capacitor is thus represented by [4]:

Q(t) = Qθ(t) (1)

where θ is a step function given by

θ(t) =
{

1 t > 0

0 t < 0.
(2)

As a result, the electric current, I , is given by:

I = dq

dt
= Qδ(t) (3)

where δ(t) is the delta function.
We are now in a position to show that the energy stored in the capacitor if 1

2CV 2
0 , as

expected, and the energy loss required to achieve a final equilibrium state is also 1
2CV 2

0 .
The electromagnetic fields E and H inside the capacitor are

E = q(t)

Aε0
Ẑ H = ρI

2A
ϕ̂ (4)

where A is the plate area of the capacitor.
The current I in equation (4) is the displacement current which is the same as the

conventional current I [5]. Accordingly, the Poynting vector is

S = E × H = −q(t)

ε0A

ρI

2A
ρ̂. (5)

The minus sign shows that energy is being stored inside the capacitor. Using (1), one
obtains the power that crosses the capacitor by integrating over the surface of a cylinder of
radius a and length d , namely

−
∮

S · da = Q2

2ε0A2
θ(t)δ(t)a

∮
da.

The surface integration gives 2πad and thus

−
∮

S · da = Q2θ(t)δ(t)

C
(6)

where C = ε0A/d .
The total energy stored is thus

−
∫

dt

∮
S · da = Q2

C

∫
θ(t)δ(t)dt = Q2

C
θ(0) (7)

where θ(0) can be thought of as an average value [6], so that

θ(0) = 1

2
[θ(0−) + θ(0+)] = 1

2
. (8)



Energy consideration in the two-capacitor problem 343

Therefore, equation (7) becomes

−
∫

dt

∮
S · da = Q2

2C
= 1

2
CV 2

0 (9)

which is the expected electrostatic energy stored in the capacitor when charged by a power
supply of electromotive force V0. At this point one must appreciate the importance of the
Maxwell term [7] that introduces a displacement current which plays a crucial role in deriving
the energy stored in the capacitor.

For the energy loss, the electromagnetic fields in the connecting wires are

H = I

2πR
ϕ̂ E = V0 − Vc

L
Ẑ (10)

where Vc is the potential difference across the capacitor. The Poynting vector at the surface of
the wire (radius R) is

S = −V0 − Vc

2πRL
Qδ(t)ρ̂. (11)

The power passing in through the surface of the wire is therefore

−
∮

S · daQ(V0 − Vc)δ(t) (12)

and thus the total energy transferred into the wire is

−
∮

dt

∫
S · da = QV0 − Q2

2C
= 1

2
CV 2

0 (13)

where we have used equation (8). Equations (9) and (13) show that the energy delivered by
the power supply, which is equal to CV 2

0 , is divided into two halves: one half is electrostatic
energy stored in the capacitor and the other half is energy transferred into the wires which is
required to achieve a final equilibrium state, i.e. the power supply and the capacitor have the
same potential V0.

3. The two-capacitor problem

Consider a charged capacitor (hereafter called the first capacitor) of capacitance C1 and
charge Q0 that is being connected to an uncharged capacitor of capacitance C2 (hereafter
called the second capacitor). The final equilibrium state is determined by the conservation of
charge and the requirement for a common final potential difference across the two capacitors.
Straightforward calculations yield that the final common potential, V , is

V = C1V0

C1 + C2
(14)

while the final electrostatic energy stored inside the two capacitors is

U = U0
C1

C1 + C2
(15)

so that the energy loss is

U ′ = U0 − U = U0
C2

C1 + C2
(16)

where U0 = 1
2C1V

2
0 is the initial energy of the system.

Our aim here is to derive the energy loss given in equation (16) without any reference to
the nature of the mechanism responsible for the dissipated energy needed to establish a final
equilibrium state.
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As in section 2, we assume that the connecting wires between the two capacitors are
superconductors with cylindrical symmetry, of length L and radius R. After connecting the
capacitors and during the transient state, let the charge on the second capacitor be q2(t) and
the charge on the first capacitor be q1(t), so that

q2(t) = Q2θ(t) (17)

q1(t) = Q0 − Q2θ(t) (18)

and thus the current is

I = dq2

dt
= −dq1

dt
= Q2δ(t). (19)

The electric field parallel to the wire is

E = 1

L

(
q1

C1
− q2

C2

)
Ẑ. (20)

Using equations (17) and (18), we obtain

E = 1

L

[
Q2 − Q2θ(t)

C1
− Q2θ(t)

C2

]
Ẑ. (21)

The H field at the surface (radius R) is

H = I

2πR
ϕ̂

which, using equation (19), becomes

H = Q2δ(t)

2πR
ϕ̂. (22)

Accordingly, the Poynting vector is

S = E × H = −E
Q2δ(t)

2πR
ρ̂. (23)

The power passing in through the surface of the wire is therefore

−
∮

S · da = Q2δ(t)

[
Q0 − Q2θ(t)

C1
− Q2θ(t)

C2

]
. (24)

Hence, the energy passing in through the surface of the wire is

−
∫

dt

∮
S · da = Q0Q2

C1
− Q2

2

2C1
− Q2

2

2C2
= V0Q2 − Q2

2

2

(
C1 + C2

C1C2

)
. (25)

Using equation (14) we obtain the final charge on the second capacitor which is

Q2 = C1C2V0

C1C2
(26)

and thus equation (25) becomes

−
∫

dt

∮
S · da = U0

C2

C1 + C2
(27)

which is the electrostatic energy loss given in equation (16). Again, this derived energy loss is
the price that one must pay for obtaining a final equilibrium state, i.e. final common potential
difference across the two capacitors.
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4. Results and discussion

The electrostatic energy loss in the two-capacitor problem has been derived., This energy
loss is a consequence of the requirement that a common final potential difference across the
two capacitors is imposed at the final equilibrium state,. Our derivation for the energy loss
is independent of the nature of the damping mechanism involved in the process but based
purely on the Poynting vector in electrodynamics. The method adopted for the derivation of
the energy loss is interesting because no use is made of the resistance in the circuit and thus
it is not the Joule heating that is responsible for this energy loss, as is widely believed. The
reason for this wide belief is that one usually starts by assuming a resistance in the circuit as
a damping mechanism and then the integrated power loss yields the energy loss even in the
limit as the resistance is chosen arbitrarily close to zero.

Here are some examples of other systems that have similar behaviour to that which we
have discussed [3]. The first one is the one-dimensional totally inelastic collision between
two ‘point’ masses. Here, the imposed condition is the common final velocity, which is
responsible for the dissipation of the kinetic energy. The second system consists of two
interacting (massless) Hooke’s law springs. Here, we have two horizontal springs whose far
ends are attached to fixed walls. In the initial state, one spring is held in a stretched position by
an applied force (analogous to an emf charging a capacitor), while the other spring is relaxed
(analogous to an uncharged capacitor). In this initial state the two springs just fill the space
between the fixed walls. The springs are then allowed to interact by connecting their adjacent
ends and removing the force on the first spring. The final state is achieved by conservation of
elongation and the equality of the two spring forces. Again, the price that one must pay is the
dissipation of a specific fraction of the system energy.
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